atmega16单片机的spi六脚接口使用哪种封装形式

51\u5355\u7247\u673aSPI\u63a5\u53e3\u662f\u4ec0\u4e48\uff1f


\u6069\uff0c\u662f\u7684\uff0c51\u5355\u7247\u673a\u6ca1\u6709\u5e26SPI\u63a7\u5236\u5668\u3002\u7ed9\u4f60\u6a21\u62dfSPI\u63a7\u5236nRF24L01\u7a0b\u5e8f\u53c2\u8003\uff0c\u6211\u7684\u8054\u7cfb\u65b9\u5f0f\u770b\u6211\u540d\u5b57

#include
#include

typedef unsigned char uchar;
typedef unsigned char uint;

//****************************************IO\u7aef\u53e3\u5b9a\u4e49***************************************
sbit CSN =P2^0; //SPI \u7247\u9009\u4f7f\u80fd,\u4f4e\u7535\u5e73\u4f7f\u80fd
sbit MOSI =P2^1; //SPI\u4e32\u884c\u8f93\u5165
sbit IRQ =P2^2; //\u4e2d\u65ad.\u4f4e\u7535\u5e73\u4f7f\u80fd
sbit MISO =P2^3; //SPI\u4e32\u884c\u8f93\u51fa
sbit SCK =P2^4; //SPI\u65f6\u949f
sbit CE =P2^5; //\u82af\u7247\u4f7f\u80fd,\u9ad8\u7535\u5e73\u4f7f\u80fd

//***********************************\u6570\u7801\u7ba10-9\u7f16\u7801*******************************************
uchar seg[10]={0xC0,0xCF,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; //0~~9\u6bb5\u7801
uchar TxBuf[32]=
{ /*
0x01,0x02,0x03,0x4,0x05,0x06,0x07,0x08,
0x09,0x10,0x11,0x12,0x13,0x14,0x15,0x16,
0x17,0x18,0x19,0x20,0x21,0x22,0x23,0x24,
0x25,0x26,0x27,0x28,0x29,0x30,0x31,0x32,
*/
0x00
}; //
//************************************\u6309\u952e**********************************************
sbit KEY1=P3^6;
sbit KEY2=P3^7;
//***********************************\u6570\u7801\u7ba1\u4f4d\u9009**************************************************
sbit led1=P2^1;
sbit led0=P2^0;
sbit led2=P2^2;
sbit led3=P2^3;
//*********************************************NRF24L01*************************************
#define TX_ADR_WIDTH 5 // 5 uints TX address width
#define RX_ADR_WIDTH 5 // 5 uints RX address width
#define TX_PLOAD_WIDTH 32 // 20 uints TX payload
#define RX_PLOAD_WIDTH 32 // 20 uints TX payload
uint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //\u672c\u5730\u5730\u5740
uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //\u63a5\u6536\u5730\u5740
//***************************************NRF24L01\u5bc4\u5b58\u5668\u6307\u4ee4*******************************************************
#define READ_REG 0x00 // \u8bfb\u5bc4\u5b58\u5668\u6307\u4ee4
#define WRITE_REG 0x20 // \u5199\u5bc4\u5b58\u5668\u6307\u4ee4
#define RD_RX_PLOAD 0x61 // \u8bfb\u53d6\u63a5\u6536\u6570\u636e\u6307\u4ee4
#define WR_TX_PLOAD 0xA0 // \u5199\u5f85\u53d1\u6570\u636e\u6307\u4ee4
#define FLUSH_TX 0xE1 // \u51b2\u6d17\u53d1\u9001 FIFO\u6307\u4ee4
#define FLUSH_RX 0xE2 // \u51b2\u6d17\u63a5\u6536 FIFO\u6307\u4ee4
#define REUSE_TX_PL 0xE3 // \u5b9a\u4e49\u91cd\u590d\u88c5\u8f7d\u6570\u636e\u6307\u4ee4
#define NOP 0xFF // \u4fdd\u7559
//*************************************SPI(nRF24L01)\u5bc4\u5b58\u5668\u5730\u5740****************************************************
#define CONFIG 0x00 // \u914d\u7f6e\u6536\u53d1\u72b6\u6001\uff0cCRC\u6821\u9a8c\u6a21\u5f0f\u4ee5\u53ca\u6536\u53d1\u72b6\u6001\u54cd\u5e94\u65b9\u5f0f
#define EN_AA 0x01 // \u81ea\u52a8\u5e94\u7b54\u529f\u80fd\u8bbe\u7f6e
#define EN_RXADDR 0x02 // \u53ef\u7528\u4fe1\u9053\u8bbe\u7f6e
#define SETUP_AW 0x03 // \u6536\u53d1\u5730\u5740\u5bbd\u5ea6\u8bbe\u7f6e
#define SETUP_RETR 0x04 // \u81ea\u52a8\u91cd\u53d1\u529f\u80fd\u8bbe\u7f6e
#define RF_CH 0x05 // \u5de5\u4f5c\u9891\u7387\u8bbe\u7f6e
#define RF_SETUP 0x06 // \u53d1\u5c04\u901f\u7387\u3001\u529f\u8017\u529f\u80fd\u8bbe\u7f6e
#define STATUS 0x07 // \u72b6\u6001\u5bc4\u5b58\u5668
#define OBSERVE_TX 0x08 // \u53d1\u9001\u76d1\u6d4b\u529f\u80fd
#define CD 0x09 // \u5730\u5740\u68c0\u6d4b
#define RX_ADDR_P0 0x0A // \u9891\u90530\u63a5\u6536\u6570\u636e\u5730\u5740
#define RX_ADDR_P1 0x0B // \u9891\u90531\u63a5\u6536\u6570\u636e\u5730\u5740
#define RX_ADDR_P2 0x0C // \u9891\u90532\u63a5\u6536\u6570\u636e\u5730\u5740
#define RX_ADDR_P3 0x0D // \u9891\u90533\u63a5\u6536\u6570\u636e\u5730\u5740
#define RX_ADDR_P4 0x0E // \u9891\u90534\u63a5\u6536\u6570\u636e\u5730\u5740
#define RX_ADDR_P5 0x0F // \u9891\u90535\u63a5\u6536\u6570\u636e\u5730\u5740
#define TX_ADDR 0x10 // \u53d1\u9001\u5730\u5740\u5bc4\u5b58\u5668
#define RX_PW_P0 0x11 // \u63a5\u6536\u9891\u90530\u63a5\u6536\u6570\u636e\u957f\u5ea6
#define RX_PW_P1 0x12 // \u63a5\u6536\u9891\u90530\u63a5\u6536\u6570\u636e\u957f\u5ea6
#define RX_PW_P2 0x13 // \u63a5\u6536\u9891\u90530\u63a5\u6536\u6570\u636e\u957f\u5ea6
#define RX_PW_P3 0x14 // \u63a5\u6536\u9891\u90530\u63a5\u6536\u6570\u636e\u957f\u5ea6
#define RX_PW_P4 0x15 // \u63a5\u6536\u9891\u90530\u63a5\u6536\u6570\u636e\u957f\u5ea6
#define RX_PW_P5 0x16 // \u63a5\u6536\u9891\u90530\u63a5\u6536\u6570\u636e\u957f\u5ea6
#define FIFO_STATUS 0x17 // FIFO\u6808\u5165\u6808\u51fa\u72b6\u6001\u5bc4\u5b58\u5668\u8bbe\u7f6e
//**************************************************************************************
void Delay(unsigned int s);
void inerDelay_us(unsigned char n);
void init_NRF24L01(void);
uint SPI_RW(uint uchar);
uchar SPI_Read(uchar reg);
void SetRX_Mode(void);
uint SPI_RW_Reg(uchar reg, uchar value);
uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars);
uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars);
unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);
void nRF24L01_TxPacket(unsigned char * tx_buf);
//*****************************************\u957f\u5ef6\u65f6*****************************************
void Delay(unsigned int s)
{
unsigned int i;
for(i=0; i<s; i++);
for(i=0; i<s; i++);
}
//******************************************************************************************
uint bdata sta; //\u72b6\u6001\u6807\u5fd7
sbit RX_DR =sta^6;
sbit TX_DS =sta^5;
sbit MAX_RT =sta^4;
/******************************************************************************************
/*\u5ef6\u65f6\u51fd\u6570
/******************************************************************************************/
void inerDelay_us(unsigned char n)
{
for(;n>0;n--)
_nop_();
}
//****************************************************************************************
/*NRF24L01\u521d\u59cb\u5316
//***************************************************************************************/
void init_NRF24L01(void)
{
inerDelay_us(100);
CE=0; // chip enable
CSN=1; // Spi disable
SCK=0; // Spi clock line init high
SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // \u5199\u672c\u5730\u5730\u5740
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH); // \u5199\u63a5\u6536\u7aef\u5730\u5740
SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // \u9891\u90530\u81ea\u52a8 ACK\u5e94\u7b54\u5141\u8bb8
SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // \u5141\u8bb8\u63a5\u6536\u5730\u5740\u53ea\u6709\u9891\u90530\uff0c\u5982\u679c\u9700\u8981\u591a\u9891\u9053\u53ef\u4ee5\u53c2\u8003Page21
SPI_RW_Reg(WRITE_REG + RF_CH, 0); // \u8bbe\u7f6e\u4fe1\u9053\u5de5\u4f5c\u4e3a2.4GHZ\uff0c\u6536\u53d1\u5fc5\u987b\u4e00\u81f4
SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //\u8bbe\u7f6e\u63a5\u6536\u6570\u636e\u957f\u5ea6\uff0c\u672c\u6b21\u8bbe\u7f6e\u4e3a32\u5b57\u8282
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); //\u8bbe\u7f6e\u53d1\u5c04\u901f\u7387\u4e3a1MHZ\uff0c\u53d1\u5c04\u529f\u7387\u4e3a\u6700\u5927\u503c0dB
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ\u6536\u53d1\u5b8c\u6210\u4e2d\u65ad\u54cd\u5e94\uff0c16\u4f4dCRC\uff0c\u4e3b\u53d1\u9001
}
/****************************************************************************************************
/*\u51fd\u6570\uff1auint SPI_RW(uint uchar)
/*\u529f\u80fd\uff1aNRF24L01\u7684SPI\u5199\u65f6\u5e8f
/****************************************************************************************************/
uint SPI_RW(uint uchar)
{
uint bit_ctr;
for(bit_ctr=0;bit_ctr<8;bit_ctr++) // output 8-bit
{
MOSI = (uchar & 0x80); // output 'uchar', MSB to MOSI
uchar = (uchar << 1); // shift next bit into MSB..
SCK = 1; // Set SCK high..
uchar |= MISO; // capture current MISO bit
SCK = 0; // ..then set SCK low again
}
return(uchar); // return read uchar
}
/****************************************************************************************************
/*\u51fd\u6570\uff1auchar SPI_Read(uchar reg)
/*\u529f\u80fd\uff1aNRF24L01\u7684SPI\u65f6\u5e8f
/****************************************************************************************************/
uchar SPI_Read(uchar reg)
{
uchar reg_val;

CSN = 0; // CSN low, initialize SPI communication...
SPI_RW(reg); // Select register to read from..
reg_val = SPI_RW(0); // ..then read registervalue
CSN = 1; // CSN high, terminate SPI communication

return(reg_val); // return register value
}
/****************************************************************************************************/
/*\u529f\u80fd\uff1aNRF24L01\u8bfb\u5199\u5bc4\u5b58\u5668\u51fd\u6570
/****************************************************************************************************/
uint SPI_RW_Reg(uchar reg, uchar value)
{
uint status;

CSN = 0; // CSN low, init SPI transaction
status = SPI_RW(reg); // select register
SPI_RW(value); // ..and write value to it..
CSN = 1; // CSN high again

return(status); // return nRF24L01 status uchar
}
/****************************************************************************************************/
/*\u51fd\u6570\uff1auint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
/*\u529f\u80fd: \u7528\u4e8e\u8bfb\u6570\u636e\uff0creg\uff1a\u4e3a\u5bc4\u5b58\u5668\u5730\u5740\uff0cpBuf\uff1a\u4e3a\u5f85\u8bfb\u51fa\u6570\u636e\u5730\u5740\uff0cuchars\uff1a\u8bfb\u51fa\u6570\u636e\u7684\u4e2a\u6570
/****************************************************************************************************/
uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uint status,uchar_ctr;

CSN = 0; // Set CSN low, init SPI tranaction
status = SPI_RW(reg); // Select register to write to and read status uchar

for(uchar_ctr=0;uchar_ctr<uchars;uchar_ctr++)
pBuf[uchar_ctr] = SPI_RW(0); //

CSN = 1;

return(status); // return nRF24L01 status uchar
}
/*********************************************************************************************************
/*\u51fd\u6570\uff1auint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
/*\u529f\u80fd: \u7528\u4e8e\u5199\u6570\u636e\uff1a\u4e3a\u5bc4\u5b58\u5668\u5730\u5740\uff0cpBuf\uff1a\u4e3a\u5f85\u5199\u5165\u6570\u636e\u5730\u5740\uff0cuchars\uff1a\u5199\u5165\u6570\u636e\u7684\u4e2a\u6570
/*********************************************************************************************************/
uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uint status,uchar_ctr;

CSN = 0; //SPI\u4f7f\u80fd
status = SPI_RW(reg);
for(uchar_ctr=0; uchar_ctr<uchars; uchar_ctr++) //
SPI_RW(*pBuf++);
CSN = 1; //\u5173\u95edSPI
return(status); //
}
/****************************************************************************************************/
/*\u51fd\u6570\uff1avoid SetRX_Mode(void)
/*\u529f\u80fd\uff1a\u6570\u636e\u63a5\u6536\u914d\u7f6e
/****************************************************************************************************/
void SetRX_Mode(void)
{
CE=0;
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // IRQ\u6536\u53d1\u5b8c\u6210\u4e2d\u65ad\u54cd\u5e94\uff0c16\u4f4dCRC \uff0c\u4e3b\u63a5\u6536
CE = 1;
inerDelay_us(130);
}
/******************************************************************************************************/
/*\u51fd\u6570\uff1aunsigned char nRF24L01_RxPacket(unsigned char* rx_buf)
/*\u529f\u80fd\uff1a\u6570\u636e\u8bfb\u53d6\u540e\u653e\u5982rx_buf\u63a5\u6536\u7f13\u51b2\u533a\u4e2d
/******************************************************************************************************/
unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)
{
unsigned char revale=0;
sta=SPI_Read(STATUS); // \u8bfb\u53d6\u72b6\u6001\u5bc4\u5b58\u5176\u6765\u5224\u65ad\u6570\u636e\u63a5\u6536\u72b6\u51b5
if(RX_DR) // \u5224\u65ad\u662f\u5426\u63a5\u6536\u5230\u6570\u636e
{
CE = 0; //SPI\u4f7f\u80fd
SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer
revale =1; //\u8bfb\u53d6\u6570\u636e\u5b8c\u6210\u6807\u5fd7
}
SPI_RW_Reg(WRITE_REG+STATUS,sta); //\u63a5\u6536\u5230\u6570\u636e\u540eRX_DR,TX_DS,MAX_PT\u90fd\u7f6e\u9ad8\u4e3a1\uff0c\u901a\u8fc7\u51991\u6765\u6e05\u695a\u4e2d\u65ad\u6807\u5fd7
return revale;
}
/***********************************************************************************************************
/*\u51fd\u6570\uff1avoid nRF24L01_TxPacket(unsigned char * tx_buf)
/*\u529f\u80fd\uff1a\u53d1\u9001 tx_buf\u4e2d\u6570\u636e
/**********************************************************************************************************/
void nRF24L01_TxPacket(unsigned char * tx_buf)
{
CE=0; //StandBy I\u6a21\u5f0f
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // \u88c5\u8f7d\u63a5\u6536\u7aef\u5730\u5740
SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH); // \u88c5\u8f7d\u6570\u636e
// SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ\u6536\u53d1\u5b8c\u6210\u4e2d\u65ad\u54cd\u5e94\uff0c16\u4f4dCRC\uff0c\u4e3b\u53d1\u9001
CE=1; //\u7f6e\u9ad8CE\uff0c\u6fc0\u53d1\u6570\u636e\u53d1\u9001
inerDelay_us(10);
}

/***********************************************************************************************************
/*\u51fd\u6570\uff1ainit_uart(void)
/*\u529f\u80fd\uff1a\u521d\u59cb\u5316\u4e32\u53e3;\u6ce2\u7279\u73874800bps
/**********************************************************************************************************/
void init_uart(void)
{
SCON = 0x50;
TMOD = 0x20;
TH1 = 0xFA;
TL1 = 0xFA;
PCON = 0x00;
TR1 = 1;
}

//************************************\u901a\u8fc7\u4e32\u53e3\u5c06\u63a5\u6536\u5230\u6570\u636e\u53d1\u9001\u7ed9PC\u7aef**************************************
void R_S_Byte(uchar R_Byte)
{
SBUF = R_Byte;
while( TI == 0 ); //\u67e5\u8be2\u6cd5
TI = 0;
}

//************************************\u5de5\u4f5c\u6307\u793a\u706f**************************************
void power_on(void)
{
P0 = 0xfd;
Delay(6000);

P0 = 0xff;
Delay(6000);
}

//************************************\u4e3b\u51fd\u6570************************************************************
void main(void)
{
uchar i;
uchar temp =0;

init_uart();
init_NRF24L01();

nRF24L01_TxPacket(TxBuf); // Transmit Tx buffer data

Delay(6000);

//CE = 1;
while(1)
{
power_on();
nRF24L01_TxPacket(TxBuf);
SPI_RW_Reg(WRITE_REG+STATUS,0XFF);
Delay(100);
//Delay(6000);
TxBuf[31] = TxBuf[31] + 1;
}
}

一般是使用牛角或者简易牛角接口,引脚间距为100mil。实际设计时可根据板子的需求选择其他的连接方式

sip6

  • atmega16鏈夊灏戣矾涓插彛
    绛旓細涓涓猆SART锛屼竴涓SPI銆佷竴涓狪2C銆傚鏋滃绋嬪簭瀹炴椂鎬ц姹備笉楂橈紝鍙互浣跨敤杞欢妯℃嫙銆
  • ATmega16鍗曠墖鏈虹殑鍐呮牳浠嬬粛
    绛旓細姣忎釜涓柇鍦ㄤ腑鏂悜閲忚〃閲岄兘鏈夌嫭绔嬬殑涓柇鍚戦噺銆傚悇涓腑鏂殑浼樺厛绾т笌鍏跺湪涓柇鍚戦噺琛ㄧ殑浣嶇疆鏈夊叧锛屼腑鏂悜閲忓湴鍧瓒婁綆锛屼紭鍏堢骇瓒婇珮銆侷/O 瀛樺偍鍣ㄧ┖闂村寘鍚64 涓彲浠ョ洿鎺ュ鍧鐨勫湴鍧锛屼綔涓篊PU 澶栬鐨勬帶鍒跺瘎瀛樺櫒銆SPI锛屼互鍙婂叾浠朓/O 鍔熻兘銆傛槧灏勫埌鏁版嵁绌洪棿鍗充负瀵勫瓨鍣ㄦ枃浠朵箣鍚庣殑鍦板潃0x20 - 0x5F銆
  • ATmega16鐗规х畝浠嬩笌缁撴瀯绠浠嬫湁浠涔堝尯鍒憖
    绛旓細姣旇緝鍔熻兘鍜屾崟鎹夊姛鑳界殑16 浣嶅畾鏃跺櫒 /璁℃暟鍣 鈥 鍏锋湁鐙珛鎸崱鍣ㄧ殑瀹炴椂璁℃暟鍣≧TC 鈥 鍥涢氶亾PWM 鈥8璺 10 浣岮DC 8 涓崟绔氶亾 TQFP 灏佽鐨7 涓樊鍒嗛氶亾 2涓叿鏈夊彲缂栫▼澧炵泭 锛1x, 10x, 鎴200x锛夌殑宸垎閫氶亾 鈥 闈㈠悜瀛楄妭鐨勪袱绾挎帴鍙 鈥 涓や釜鍙紪绋嬬殑涓茶USART 鈥 鍙伐浣滀簬涓绘満/浠庢満妯″紡鐨 SPI...
  • atmega16鐨鐗囧瓙1KB鐨凷RAM杩愯鍐呭瓨澶熺敤鍚?
    绛旓細濡傛灉鍙槸涓哄崟鐙樉绀轰竴寮犲浘鐗囩殑璇濓紝閭g敤涓嶄簡澶氬ぇ鐨勫唴瀛樸備綘鏄敤鐨凷PI FLASH瀛樺偍鍥剧墖锛岃繖鑺墖涓涓墖鍖轰竴鑸槸512瀛楄妭锛屼竴娆¤鍙栦竴涓墖鍖猴紝閭d箞mega16鐨1k鍐呭瓨鏄鐢ㄧ殑銆
  • AVR鍗曠墖鏈搴旂敤寮鍙戞寚鍗楀強瀹炰緥绮捐В鐩綍
    绛旓細AVR鍗曠墖鏈哄簲鐢ㄥ紑鍙戞寚鍗楁繁鍏ヨВ鏋:1. 鍏ラ棬绡: 鐞嗚В鏍稿績 1.1 ATmega16/32鏋舵瀯姒傝堪: 鎺㈢储鍗曠墖鏈虹殑鍩烘湰鏋勬垚锛屽寘鎷珻PU銆佸瓨鍌ㄥ櫒銆佸浣嶇郴缁熺瓑銆1.2 CPU璇﹁В: 浜嗚ВCPU鐨勫伐浣滃師鐞嗗拰鍐呴儴缁撴瀯銆1.3 瀛樺偍鍣ㄨ瑙: 瀛︿範涓嶅悓绫诲瀷鐨勫瓨鍌ㄥ櫒濡備綍鍗忎綔浠ヨ繍琛岀▼搴忋1.4 澶嶄綅涓庝腑鏂郴缁: 鐮旂┒濡備綍鍒╃敤杩欎簺鍔熻兘瀹炵幇楂樻晥鐨勭▼搴...
  • ATmega16 16Mhz鏅舵尟,鎺200kspsADC,spi鎺ュ彛,鍗曠墖鏈閫熷害璺熷緱涓婂悧_鐧惧害...
    绛旓細鍙互鐨勶紝涓昏鏄湅瀹炴祴鐨勶紝杩欎簺鍙傛暟鍙槸鍙傝冭屽繁
  • ATmega16L涓51绯诲垪鍗曠墖鏈虹殑寮傚悓
    绛旓細1銆佽繍琛岄熷害涓嶅悓锛欰VR鍗曠墖鏈猴紙ATmega16锛夌殑鏃堕挓婧愶紙鏅舵尟銆佸唴閮≧C绛夛級鍙互涓嶇粡杩囧垎棰戠洿鎺ユ彁渚涚粰CPU浣跨敤锛51鐨凜PU涓婚绛変簬鏅舵尟鐨12鍒嗛锛孉Tmega16澶栭儴鎻愪緵16M鏅舵巵锛屽嵆CPU棰戠巼鍙揪16M銆傚父瑙51鐨勬椂閽熸簮涓12M锛岀粡12鍒嗛鍚嶤PU棰戠巼浠呬负1M锛屾墍浠VR鍗曠墖鏈虹殑杩愯閫熷害姣51鍗曠墖鏈虹殑杩愯閫熷害瑕佸揩鐨勫锛屽苟涓擜VR鍗曠墖鏈哄彲...
  • ATMEGA16-16涓嶢TMEGA16L-8pu鏈変粈涔堝尯鍒
    绛旓細鎺ュ彛绫诲瀷:JTAG, SPI, USART 鏃堕挓棰戠巼:16MHz 妯℃暟杞崲鍣ㄤ綅鏁:10 妯℃暟杞崲鍣ㄨ緭鍏ユ暟:8 鐢垫簮鐢靛帇 鏈澶:5.5V 鐢垫簮鐢靛帇 鏈灏:4.5V 鑺墖鏍囧彿:16 涓枃鍚嶏細ATMEGA16L-8PU 绫 鍒細宓屽叆寮 - 寰鐞嗗櫒 绯 鍒楋細AVR? ATmega 鏍稿績澶勭悊鍣細AVR 鍩烘湰鍙傛暟 绫诲埆锛氬祵鍏ュ紡 - 寰鐞嗗櫒锛岀郴鍒楋細AVR? ATmeg...
  • Atmega16鐨凙Tmega16 寮曡剼鍔熻兘
    绛旓細VCC 鐢垫簮姝ND 鐢垫簮鍦扮鍙(PA7..PA0)绔彛A 鍋氫负A/D 杞崲鍣ㄧ殑妯℃嫙杈撳叆绔傜鍙 涓8 浣嶅弻鍚慖/O 鍙o紝鍏锋湁鍙紪绋嬬殑鍐呴儴涓婃媺鐢甸樆銆傚叾杈撳嚭缂撳啿鍣ㄥ叿鏈夊绉扮殑椹卞姩鐗规э紝鍙互杈撳嚭鍜屽惛鏀跺ぇ鐢垫祦銆備綔涓鸿緭鍏ヤ娇鐢ㄦ椂锛岃嫢鍐呴儴涓婃媺鐢甸樆浣胯兘锛岀鍙h澶栭儴鐢佃矾鎷変綆鏃跺皢杈撳嚭鐢垫祦銆傚湪澶嶄綅杩囩▼涓紝鍗充娇绯荤粺鏃堕挓杩樻湭璧...
  • 濡備綍鍦ㄦ恫鏅朵笂鏄剧ず姹夊瓧,鍗曠墖鏈鐢ㄧ殑ATmega16,娑叉櫠鏄1602,姹傝缁嗕唬鐮...
    绛旓細6銆佽渹楦e櫒(鍋鍗曠墖鏈鍙戝0瀹為獙 鎾斁闊充箰瀹為獙 鎶ヨ瀹為獙绛夊0鍝嶅疄楠) 7銆丏S18B20娓╁害浼犳劅鍣,(鍒濇鎺屾彙鍗曠墖鏈烘搷浣滃悗鍗冲彲浜茶嚜缂栧啓绋嬪簭鑾风煡褰撴椂鐨勬俯搴 鍙互閰嶅悎鏈珯鍘熷垱鐨凱C涓庡崟鐗囨満鍙屽悜娓╁害鎺у埗绋嬪簭 灏嗘俯搴﹀疄鏃舵樉绀哄湪鐢佃剳涓) 8銆丄T24C08澶栭儴EEPROM瀛樺偍鑺墖(IIC鎬荤嚎鍏冧欢瀹為獙) 9銆SPI涓茶瀹炴椂鏃堕挓 DS1302(鐔熸倝SPI鎬荤嚎 鐢―S1302鍙互...
  • 扩展阅读:50个常用元器件图片 ... 电子元件识别大全图 ... plc基础知识指令27个 ... atmega328p arduino ... 购买switch游戏机官网 ... atmel microchip ... atmega328p-pu单片机 ... atmega16电子钟 ... 单片机报价及图片大全 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网