什么是十字相乘法?

\u4ec0\u4e48\u662f\u5341\u5b57\u76f8\u4e58\u6cd5\u3002

\u5341\u5b57\u76f8\u4e58\u6cd5\u7684\u65b9\u6cd5\u7b80\u5355\u6765\u8bb2\u5c31\u662f\uff1a\u5341\u5b57\u5de6\u8fb9\u76f8\u4e58\u7b49\u4e8e\u4e8c\u6b21\u9879\uff0c\u53f3\u8fb9\u76f8\u4e58\u7b49\u4e8e\u5e38\u6570\u9879\uff0c\u4ea4\u53c9\u76f8\u4e58\u518d\u76f8\u52a0\u7b49\u4e8e\u4e00\u6b21\u9879\u3002\u5176\u5b9e\u5c31\u662f\u8fd0\u7528\u4e58\u6cd5\u516c\u5f0f(x+a)(x+b)=x²+(a+b)x+ab\u7684\u9006\u8fd0\u7b97\u6765\u8fdb\u884c\u56e0\u5f0f\u5206\u89e3\u3002

\u6bd4\u5982\uff1aX2+X-2 \u628a\u62c6\u5f00\uff1a\u56e0\u4e3a\u524d\u9762X2\u7684\u7cfb\u6570\u4e3a1\uff0c-2\u53ef\u4ee5\u5212\u5206\u4e3a-1\u00d71\u6216\u8005-2\u00d71\u4e0e-1\u00d72.\u5c06\u524d\u9762\u7684\u7cfb\u6570X2\u7684\u7cfb\u6570\u4e3a1\u00d71\u6240\u4ee5\u5341\u5b57\u8868\u8fbe\u56fe\u4e3a\u3002 1 -2
\u00d7 \u8fd9\u6837\u7684\u8bdd\u6211\u4eec\u6765\u7b97\u4e00\u4e0b\uff0c1\u00d71+1\u00d7-2=-1\u4f46\u662f\u6211\u4eec\u56de\u5934\u770b\u4e00\u4e0b\u8fd9\u4e2a\u65b9\u7a0b
1 1 \u5f0fX2+X+2\uff0c\u5176\u4e2d\u6211\u4eec\u6c42\u51fa\u6765\u7684-1\u4e0d\u7b26\u5408\u9898\u610f\uff0c\u4e3a\u4ec0\u4e48\u5462\uff1f~~\u56e0\u4e3a\u6211\u4eec\u8fd9\u8fb9\u8fd8\u6709\u4e2aX\u56e0\u4e3a\u4ed6\u7684\u7cfb\u6570\u4e3a-1\u22601\uff0c\u6240\u4ee5\u6211\u4eec\u4ece\u53e6\u4e00\u6b65\u9aa4\u6765\u3002
1 2 \u540c\u4e0a1\u00d72+1\u00d7-1=1 1=1\u6240\u4ee5\u5c31\u662f\u8fd9\u4e2a\u4e86
\u00d7
1 -1
\u6211\u4eec\u5c31\u628a\u4e0a\u9762\u7684\u5341\u5b57\u56fe\u7684\u6a2a\u6392\u76f8\u52a0\u5982\uff1a
1 + 2
\u00d7 \u6a2a\u6392\uff1a1+2 1-1 \u5c31\u628a\u524d\u9762\u76841\u53d8\u4e3aX\u5c31\u53d8\u6210\u4e86X2+X-2=\uff08X+2\uff09
1 -1 \uff08X-1\uff09
\u53cd\u6b63\u5c31\u662f\u5c06\u6709\u53ef\u80fd\u5206\u89e3\u7684\u5206\u89e3\u6bd4\u5982\uff1a8=\uff082\u00d74 4\u00d72\uff09 \uff08-2\u00d7-4 -4\u00d7-2\uff09 \uff081\u00d78 8\u00d71\uff09 \uff08-1\u00d7-8 -8\u00d7-1\uff09 \u6240\u6709\u53ef\u80fd\u5206\u89e3\u7684\u60c5\u51b5\u90fd\u8981\u5206\u89e3\u51fa\u6765\uff0c\u6211\u6253\u62ec\u53f7\u7684\u7528\u5341\u5b57\u56fe\u76f8\u4e58\u5f97\u51fa\u6765\u7684\u90fd\u662f\u76f8\u53cd\u6570\uff0c\u4e0d\u4fe1\u968f\u4fbf\u62ff\u51e0\u4e2a\u80fd\u5206\u89e3\u7684\u6570\uff0c\u81ea\u5df1\u53bb\u8bd5\u8bd5\uff0c\u8981\u4ed6\u4eec\u7684\u5206\u89e3\u51fa\u6765\u50cf\u6211\u62ec\u53f7\u91cc\u9762\u7684\u89c4\u5f8b\u3002\u53cd\u6b63\u5c31\u662f\u5c31\u662f\u6211\u697c\u4e0a\u8bf4\u7684\u201c\u62c6\u5e38\u6570\u9879\uff0c\u51d1\u4e00\u6b21\u9879\u201d\u591a\u627e\u70b9\u9898\u505a\u505a\uff0c\u5c31\u80fd\u770b\u89c1\u4ed6\u4eec\u5c31\u968f\u5fc3\u6240\u6b32\u4e86\u3002\u4e0d\u61c2\u7684\u8ffd\u95ee\u5427\u3002 X2\u5c31\u662fX\u7684\u5e73\u65b9\uff0c\u8fd9\u4e2a\u4e0a\u9762\u4e0d\u80fd\u663e\u793a\u3002

十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。   十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax^2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x^2+(p+q)χ+pq=(χ+p)(χ+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. .   上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以上式可以分解为:x^2+7x+12=(x+3)(x+4) .   又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5×(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 十字相乘法
讲解:   x^2-3x+2=如下:   x -1   ╳   x -2   左边x乘x= x^2   右边-1乘-2=2   中间-1乘x+(-2)乘x(对角)=-3x   上边的【x+(-1)】乘下边的【x+(-2)】   就等于(x-1)*(x-2)   x^2-3x+2=(x-1)*(x-2)
编辑本段通俗方法
  先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写   1 1   ╳   二次项系数 常数项   若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)   需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)   a b   ╳   c d   第一次a=1 b=1 c=二次项系数÷a d=常数项÷b   第二次a=1 b=2 c=二次项系数÷a d=常数项÷b   第三次a=2 b=1 c=二次项系数÷a d=常数项÷b   第四次a=2 b=2 c=二次项系数÷a d=常数项÷b   第五次a=2 b=3 c=二次项系数÷a d=常数项÷b   第六次a=3 b=2 c=二次项系数÷a d=常数项÷b   第七次a=3 b=3 c=二次项系数÷a d=常数项÷b   ......   依此类推   直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)   例解:   2x^2+7x+6   第一次:   1 1   ╳   2 6   1X6+2X1=8 8>7 不成立 继续试   第二次   1 2   ╳   2 3   1X3+2X2=7 所以 分解后为:(x+2)(2x+3).十字相乘法能把某
编辑本段例题解析
例1
  把2x^2-7x+3分解因式.   分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分   别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.   分解二次项系数(只取正因数 因为取负因数的结果与正因数结果相同!):   2=1×2=2×1;   分解常数项:   3=1×3=3×1=(-3)×(-1)=(-1)×(-3).   用画十字交叉线方法表示下列四种情况:   1 1   ╳   2 3   1×3+2×1   =5   1 3   ╳   2 1   1×1+2×3   =7   1 -1   ╳   2 -3   1×(-3)+2×(-1)   =-5   1 -3   ╳   2 -1   1×(-1)+2×(-3)   =-7   经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.   解 2x^2-7x+3=(x-3)(2x-1)   一般地,对于二次三项式ax+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:   a1 c1   ╳   a2 c2   a1c2+a2c1   按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax^2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即   ax^2+bx+c=(a1x+c1)(a2x+c2).   像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2
  把6x^2-7x-5分解因式.   分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种   2 1   ╳   3 -5   2×(-5)+3×1=-7   是正确的,因此原多项式可以用十字相乘法分解因式.   解 6x2-7x-5=(2x+1)(3x-5)   指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.   对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是   1 -3   ╳   1 5   1×5+1×(-3)=2   所以x+2x-15=(x-3)(x+5).
例3
  把5x^2+6xy-8y^2分解因式.   分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即   1 2   ╳   5 -4   1×(-4)+5×2=6   解 5x+6xy-8y=(x+2y)(5x-4y).   指出:原式分解为两个关于x,y的一次式.
例4
  把(x-y)(2x-2y-3)-2分解因式.   分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.   问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?   答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.   解 (x-y)(2x-2y-3)-2   =(x-y)[2(x-y)-3]-2   =2(x-y) ^2-3(x-y)-2   1 -2   ╳   2 1   1×1+2×(-2)=-3   =[(x-y)-2][2(x-y)+1]   =(x-y-2)(2x-2y+1).   指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.

十字相乘法是分解因式的一种方法。
1、十字相乘法的具体方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、应用十字相乘法解题的实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b

这样应该比较好理解吧。

  • 鍗佸瓧鐩镐箻娉鏄浠涔
    绛旓細鍗佸瓧鐩镐箻娉鏈川鏄竴绉嶇畝鍖栨柟绋嬬殑褰㈠紡锛屽畠鑳芥妸浜屾涓夐」寮忓垎瑙e洜寮忥紝浣嗘槸瑕佸姟蹇呮敞鎰忓悇椤圭郴鏁扮殑绗﹀彿銆傚崄瀛楃浉涔樻硶鐨勬柟娉曠畝鍗曟潵璁插氨鏄細鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤癸紝鍙宠竟鐩镐箻绛変簬甯告暟椤癸紝浜ゅ弶鐩镐箻鍐嶇浉鍔犵瓑浜庝竴娆¢」銆傚叾瀹炲氨鏄繍鐢ㄤ箻娉曞叕寮(x+a)(x+b)=x²+(a+b)x+ab鐨勯嗚繍绠楁潵杩涜鍥犲紡鍒嗚В銆傛柟娉/姝ラ ...
  • 浠涔堟槸鍗佸瓧鐩镐箻娉?
    绛旓細鍗佸瓧鍒嗚В娉曠殑鏂规硶绠鍗曟潵璁插氨鏄細鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤癸紝鍙宠竟鐩镐箻绛変簬甯告暟椤癸紝浜ゅ弶鐩镐箻鍐嶇浉鍔犵瓑浜庝竴娆¢」銆傚叾瀹炲氨鏄繍鐢涔樻硶鍏紡(x+a)(x+b)=x²+(a+b)x+ab鐨勯嗚繍绠楁潵杩涜鍥犲紡鍒嗚В銆傚崄瀛楀垎瑙f硶鑳芥妸浜屾涓夐」寮忓垎瑙e洜寮忥紙涓嶄竴瀹氬湪鏁存暟鑼冨洿鍐咃級銆傚浜庡舰濡俛x²+bx+c=(a1x+c1锛(a2x+...
  • 鍗佸瓧鐩镐箻鏄浠涔銆
    绛旓細鍗佸瓧鐩镐箻娉鐨勬柟娉曠畝鍗曠偣鏉ヨ灏辨槸锛氬崄瀛楀乏杈圭浉涔樼瓑浜庝簩娆¢」绯绘暟锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟銆 鍗佸瓧鐩镐箻娉曡兘鎶婃煇浜涗簩娆′笁椤瑰紡鍒嗚В鍥犲紡銆傝繖绉嶆柟娉曠殑鍏抽敭鏄妸浜屾椤圭郴鏁癮鍒嗚В鎴愪袱 鍗佸瓧鐩镐箻娉 涓洜鏁癮1,a2鐨勭Нa1.a2锛屾妸甯告暟椤筩鍒嗚В鎴愪袱涓洜鏁癱1,c2鐨勭Нc1涔榗2锛屽苟浣縜1c2+a2c1...
  • 鍗佸瓧鐩镐箻娉鏄浠涔涓滀笢?
    绛旓細鍗佸瓧鐩镐箻娉曗斺斿熷姪鐢诲崄瀛椾氦鍙夌嚎鍒嗚В绯绘暟锛屼粠鑰屾妸浜屾涓夐」寮忓垎瑙e洜寮忕殑鏂规硶鍙仛鍗佸瓧鐩镐箻娉銆 鍗佸瓧鐩镐箻娉曟槸浜屾涓夐」寮忓垎瑙e洜寮忕殑涓绉嶅父鐢ㄦ柟娉曪紝瀹冩槸鍏堝皢浜屾涓夐」寮 鐨勪簩娆¢」绯绘暟a鍙婂父鏁伴」c閮藉垎瑙d负涓や釜鍥犳暟鐨勪箻绉紙涓鑸細鏈夊嚑绉嶄笉鍚岀殑鍒嗘硶锛 鐒跺悗鎸夋枩绾夸氦鍙夌浉涔樸佸啀鐩稿姞锛岃嫢鏈 锛屽垯鏈 锛屽惁鍒欙紝闇...
  • 鍗佸瓧鐩镐箻娉鐨勮瑙?
    绛旓細鍗佸瓧鐩镐箻娉灏辨槸锛氬崄瀛楀乏杈逛袱鏁扮浉涔樼瓑浜庝簩娆¢」鐨勭郴鏁帮紝鍗佸瓧鍙宠竟涓ゆ暟鐩镐箻绛変簬甯告暟椤圭殑鍊硷紝鍗佸瓧浜ゅ弶鐩镐箻锛屽啀鐩稿姞绛変簬涓娆$殑椤圭郴鏁般備緥濡傦細x²-3x+2 = 1 -1 鈺 1 -2 宸﹁竟 1脳1 = 1 (浜屾椤 x² 鐨勭郴鏁)鍙宠竟 -1脳(-2) = 2 (甯告暟椤圭殑鍊)涓棿 1脳(-2) + 1脳(...
  • 浠涔堝彨鈥鍗佸瓧鐩镐箻娉鈥?鎬庢牱蹇熻绠?
    绛旓細鈥鍗佸瓧鐩镐箻娉鈥濈敤浜庝竴鍏冧簩娆℃柟绋嬬殑姹傝В锛屾槸鍥犲紡鍒嗚В鐨勬柟娉曚箣涓锛岀啛缁冩帉鎻¤兘鎴愬嶆彁鍗囪绠楅熷害锛佷竴銆佸熀鏈師鐞 浜屻佷娇鐢ㄦ柟娉 杩愮敤涓婅堪绛夊紡鐨勯嗚繍绠楋紝鍦ㄤ粎浠呭凡鐭ョ瓑鍙峰彸杈圭殑鍐呭鎶婂乏杈圭殑寮忓瓙鍑戝嚭鏉ャ傚嵆锛氬崄瀛楀乏杈圭浉涔樼瓑浜庝簩娆¢」绯绘暟锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟銆傝繖鍙ヨ瘽浠涔鎰忔濓紝鐢ㄦ枃瀛...
  • 浠涔堟槸鍗佸瓧鐩镐箻娉鐨勮繍鐢?
    绛旓細濡備笅锛1銆鍗佸瓧鐩镐箻娉鐨勬柟娉曪細鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤圭郴鏁帮紝鍙宠竟鐩镐箻绛変簬甯告暟椤癸紝浜ゅ弶鐩镐箻鍐嶇浉鍔犵瓑浜庝竴娆¢」绯绘暟銆2銆佸崄瀛楃浉涔樻硶鐨勭敤澶勶細锛1锛夌敤鍗佸瓧鐩镐箻娉曟潵鍒嗚В鍥犲紡銆傦紙2锛夌敤鍗佸瓧鐩镐箻娉曟潵瑙d竴鍏冧簩娆℃柟绋嬨3銆佸崄瀛楃浉涔樻硶鐨勪紭鐐癸細鐢ㄥ崄瀛楃浉涔樻硶鏉ヨВ棰樼殑閫熷害姣旇緝蹇紝鑳藉鑺傜害鏃堕棿锛岃屼笖杩愮敤绠楅噺涓嶅ぇ锛屼笉瀹规槗...
  • 鍗佸瓧鐩镐箻娉鐢ㄦ硶鍙婂叾浣滅敤鏄浠涔
    绛旓細鍗佸瓧鐩镐箻娉铏界劧姣旇緝闅惧锛屼絾鏄竴鏃﹀浼氫簡瀹冿紝鐢ㄥ畠鏉ヨВ棰橈紝浼氱粰甯︽潵寰堝鏂逛究锛屼互涓嬫槸瀵瑰崄瀛楃浉涔樻硶鎻愬嚭鐨勪竴浜涗釜浜鸿瑙c1銆佸崄瀛楃浉涔樻硶鐨勬柟娉曪細鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤圭郴鏁帮紝鍙宠竟鐩镐箻绛変簬甯告暟椤癸紝浜ゅ弶鐩镐箻鍐嶇浉鍔犵瓑浜庝竴娆¢」绯绘暟銆2銆佸崄瀛楃浉涔樻硶鐨勭敤澶勶細锛1锛夌敤鍗佸瓧鐩镐箻娉曟潵鍒嗚В鍥犲紡銆傦紙2锛夌敤鍗佸瓧鐩镐箻娉曟潵瑙d竴...
  • 鍗佸瓧鐩镐箻娉鍏蜂綋鏄浠涔鎰忔?
    绛旓細鍗佸瓧鐩镐箻娉鐨勫叿浣撴柟娉曪細鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤圭郴鏁,鍙宠竟鐩镐箻绛変簬甯告暟椤,浜ゅ弶鐩镐箻鍐嶇浉鍔犵瓑浜庝竴娆¢」绯绘暟.搴旂敤鍗佸瓧鐩镐箻娉曡В棰樼殑瀹炰緥锛氫緥1鎶妋²+4m-12鍒嗚В鍥犲紡 鍒嗘瀽锛氭湰棰樹腑甯告暟椤-12鍙互鍒嗕负-1脳12,-2脳6,-3脳4,-4脳3,-6脳2,-12脳1褰-12鍒嗘垚-2脳6鏃,鎵嶇鍚堟湰棰 鍥犱负 1 -2 1 鈺 ...
  • 浠涔堝彨鍗佸瓧鐩镐箻娉
    绛旓細鍗佸瓧鐩镐箻娉鑳芥妸鏌愪簺浜屾涓夐」寮廰x2+bx+c(a鈮0)鍒嗚В鍥犲紡銆傝繖绉嶆柟娉曠殑鍏冲仴鏄妸浜屾椤圭殑绯绘暟a鍒嗚В鎴愪袱涓洜鏁癮1,a2鐨勭Нa1•a2锛屾妸甯告暟椤筩鍒嗚В鎴愪袱涓洜鏁癱1,c2鐨勭Нc1•c2锛屽苟浣縜1c2+a2c1姝eソ鏄竴娆¢」绯绘暟b锛岄偅涔堝彲浠ョ洿鎺ュ啓鎴愮粨鏋滐細ax2+bx+c=(a1x+c1)(a2x+c2),鍦ㄨ繍鐢ㄨ繖绉嶆柟娉...
  • 本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网