光纤的定义 光纤 是什么?有什么作用?

\u4ec0\u4e48\u53eb\u5149\u7ea4

\u5149\u7ea4\u63a5\u5165\u6280\u672f\u662f\u9762\u5411\u672a\u6765\u7684\u5149\u7ea4\u5230\u8def\u8fb9(HTTC)\u548c\u5149\u7ea4\u5230\u6237(HTTH)\u7684\u5bbd\u5e26\u7f51\u7edc\u63a5\u5165\u6280\u672f\u3002\u5149\u7ea4\u63a5\u5165\u7f51(OAN)\u662f\u76ee\u524d\u7535\u4fe1\u7f51\u4e2d\u53d1\u5c55\u6700\u4e3a\u5feb\u901f\u7684\u63a5\u5165\u7f51\u6280\u672f,\u9664\u4e86\u91cd\u70b9\u89e3\u51b3\u7535\u8bdd\u7b49\u7a84\u5e26\u4e1a\u52a1\u7684\u6709\u6548\u63a5\u5165\u95ee\u9898\u5916,\u8fd8\u53ef\u4ee5\u540c\u65f6\u89e3\u51b3\u9ad8\u901f\u6570\u636e\u4e1a\u52a1\u3001\u591a\u5a92\u4f53\u56fe\u50cf\u7b49\u5bbd\u5e26\u4e1a\u52a1\u7684\u63a5\u5165\u95ee\u9898\u3002OAN\u6cdb\u6307\u4ece\u4ea4\u6362\u673a\u5230\u7528\u6237\u4e4b\u95f4\u7684\u9988\u7ebf\u6bb5\u3001\u914d\u7ebf\u6bb5\u53ca\u5f15\u5165\u7ebf\u6bb5\u7684\u90e8\u5206\u6216\u5168\u90e8\u4ee5\u5149\u7ea4\u5b9e\u73b0\u63a5\u5165\u7684\u7cfb\u7edf\u3002\u9664\u4e86HFC\u5916,\u5149\u7ea4\u63a5\u5165\u7684\u65b9\u6cd5\u8fd8\u6709\u4ee5\u4e0b\u51e0\u79cd:

(1) \u5149\u7ea4\u6570\u5b57\u73af\u8def\u8f7d\u6ce2\u7cfb\u7edfl

DLC\u7cfb\u7edf\u4ee5\u5149\u7ea4\u4f20\u8f93\u65b9\u5f0f\u4ee3\u66ff\u9988\u7ebf\u3001\u914d\u7ebf,\u7136\u540e\u518d\u4ee5\u53cc\u7ede\u7ebf\u8fde\u63a5\u5230\u7528\u6237\u3002\u4ee5\u4f20\u9001\u7a84\u5e26\u4e1a\u52a1\u4e3a\u4e3b\u65f6\u91c7\u7528PDH\u51c6\u540c\u6b65\u65f6\u5206\u590d\u7528\u6280\u672f\u4f53\u5236,\u4ee5\u4f20\u9001\u5bbd\u5e26\u4e1a\u52a1\u4e3a\u4e3b\u65f6\u53ef\u91c7\u7528\u5f02\u6b65\u8f6c\u79fb\u6a21\u5f0f(ATM)\u52a0SDH\u540c\u6b65\u65f6\u5206\u590d\u7528\u6280\u672f\u4f53\u5236\u3002\u7f51\u7edc\u7ed3\u6784\u4ee5\u70b9\u5230\u70b9\u3001\u94fe\u578b\u6216\u73af\u578b\u7f51\u7ed3\u6784\u4e3a\u5e38\u89c1\u3002\u4f20\u8f93\u901f\u738734Mbps-155Mbps\u4e0d\u7b49\u3002\u4f20\u8f93\u8ddd\u79bb\u53ef\u7531\u51e0\u5343\u7c73\u5230\u4e0a\u767e\u5343\u7c73\u3002\u91c7\u7528DLC\u6280\u672f\u53ef\u4ee5\u5c06\u5149\u7ea4\u5230\u8def\u8fb9(FTTC)\u548c\u5149\u7ea4\u5230\u6237(FTTH)\u5206\u671f\u5b9e\u73b0\u3002\u8be5\u7cfb\u7edf\u6280\u672f\u6210\u719f,\u53ef\u9760\u6027\u9ad8,\u6613\u4e8e\u63a8\u5e7f\u5e94\u7528\u3002\u56fd\u5185\u5df2\u6709\u591a\u5bb6\u5382\u5546\u63a8\u51fa\u6210\u719f\u4ea7\u54c1,\u7f51\u4e0a\u5b9e\u9645\u5e94\u7528\u4e5f\u6700\u591a\u3002

(2)\u57fa\u4e8eATM\u7684\u65e0\u6e90\u5149\u7f51\u7edc

\u65e0\u6e90\u5149\u7f51\u7edc(PON)\u662f\u91c7\u7528\u5149\u7ea4\u5206\u652f\u7684\u65b9\u6cd5\u5b9e\u73b0\u70b9\u5bf9\u591a\u70b9\u901a\u4fe1\u7684\u63a5\u5165\u6280\u672f,\u53ef\u4ee5\u652f\u6301iSDN\u57fa\u7fa4\u6216\u540c\u7b49\u901f\u7387\u7684\u5404\u7c7b\u4e1a\u52a1\u3002\u6bcf\u4e2a\u5149\u7f51\u7edc\u5355\u5143(ONU)\u4e00\u822c\u53ef\u4ee5\u8fde\u63a5\u51e0\u4e2a\u5230\u51e0\u5341\u4e2a\u7528\u6237\u3002APON\u662f\u91c7\u7528ATM\u4fe1\u5143\u4f20\u9001\u65b9\u5f0f\u7684PON,\u53ef\u4ee5\u662f\u4e0a\u3001\u4e0b\u884c\u901f\u7387\u76f8\u7b49\u7684\u5bf9\u79f0\u7cfb\u7edf,\u4e5f\u53ef\u4ee5\u662f\u4e0a\u3001\u4e0b\u884c\u901f\u7387\u4e0d\u76f8\u7b49\u7684\u975e\u5bf9\u79f0\u7cfb\u7edf,\u652f\u6301iSDN\u53caB\u4e00iSDN\u4e1a\u52a1\u7684\u5e26\u5bbd\u9700\u6c42,\u53ef\u4ee5\u6ee1\u8db3\u5404\u7c7b\u7535\u4fe1\u4e1a\u52a1\u548c\u5168\u4e1a\u52a1\u7f51(FSN)\u7684\u5171\u540c\u8981\u6c42\u3002APON\u4ee3\u8868\u4e86\u5bbd\u5e26\u63a5\u5165\u6280\u672f\u7684\u6700\u65b0\u53d1\u5c55\u65b9\u5411,\u76ee\u524d\u5728\u82f1\u56fd\u3001\u5fb7\u56fd\u7b49\u5df2\u6709\u5b9e\u9645\u5e94\u7528,\u88ab\u8ba4\u4e3a\u662f\u5b9e\u73b0FTTC\u548cFTTH\u7684\u4e00\u79cd\u8f83\u597d\u65b9\u6cd5\u3002APON\u7684\u4f18\u70b9\u662f\u53ef\u4ee5\u8282\u7701\u5149\u7ea4\u548c\u5149\u8bbe\u5907\u7684\u8d39\u7528,\u5e76\u53ef\u4ee5\u5b9e\u73b0\u5bbd\u5e26\u6570\u636e\u4e1a\u52a1\u4e0eCATV\u4e1a\u52a1\u7684\u5171\u7f51\u4f20\u9001\u3002\u7f3a\u70b9\u662f\u6210\u672c\u8f83\u9ad8,\u5982\u4f55\u7ecf\u6d4e\u5730\u5b9e\u73b0\u53cc\u5411\u9ad8\u8d28\u91cf\u4f20\u8f93\u4ecd\u662f\u4e00\u4e2a\u6709\u5f85\u7814\u7a76\u7684\u95ee\u9898\u3002

(2) \u4ea4\u6362\u5f0f\u6570\u5b57\u89c6\u50cf\u6280\u672f

SDV\u662f\u5728CATV\u7f51\u4e0a\u91c7\u7528\u6ce2\u5206\u590d\u7528(WDM)\u6216\u5206\u5149\u7ea4\u6280\u672f\u5171\u4eab\u5149\u7f06\u7ebf\u8def\u7684\u7f51\u7edc\u63a5\u5165\u6280\u672f\u3002SDV\u6280\u672f\u4e0eHFC\u6280\u672f\u6bd4\u8f83,SDV\u662f\u91c7\u7528\u6570\u5b57\u4f20\u8f93\u6280\u672f\u7684\u7cfb\u7edf,HFC\u662f\u91c7\u7528\u6a21\u62df\u6280\u672f\u4f53\u5236\u7684\u7cfb\u7edf\u3002\u56e0\u6b64,SDV\u5177\u6709\u8f83\u597d\u7684\u4f20\u8f93\u8d28\u91cf,\u4fbf\u4e8e\u5347\u7ea7,\u5177\u6709\u957f\u8fdc\u7684\u53d1\u5c55\u524d\u666f\u3002SDV\u91c7\u7528\u5149\u7ea4\u63a5\u5165\u7cfb\u7edf\u548cATM\u6280\u672f,\u91c7\u7528\u5206\u5c42\u9762\u7684\u65b9\u5f0f\u63d0\u4f9b\u7535\u8bdd\u3001\u6570\u636e\u548c\u89c6\u50cf\u4fe1\u53f7\u7684\u4f20\u8f93\u3002\u7b2c\u4e00\u4e2a\u5c42\u9762\u91c7\u7528\u4f20\u7edf\u7684\u5149\u7ea4\u63a5\u5165\u7cfb\u7edf\u4f20\u8f93\u7535\u8bdd\u548c\u6570\u636e\u4e1a\u52a1\u3002\u7b2c\u4e8c\u4e2a\u5c42\u9762\u91c7\u7528\u57fa\u4e8eSDH\u7684ATM\u4fe1\u5143\u65b9\u5f0f,\u652f\u6301\u4ea4\u4e92\u5f0f\u7684\u6570\u5b57\u89c6\u50cf\u7b49\u5bbd\u5e26\u4e1a\u52a1\u3002

\u4f60\u77e5\u9053\u5149\u7ea4\u662f\u4ec0\u4e48\u5417\uff0c\u8ddf\u5149\u7f06\u6709\u4ec0\u4e48\u533a\u522b\uff1f\u5b83\u7684\u6750\u6599\u6e90\u4e8e\u8fd9\u79cd\u91d1\u5c5e

[编辑本段]光纤
是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。光导纤维由前香港中文大学校长高锟发明。
微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。
在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。
通常光纤与光缆两个名词会被混淆.多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆.光纤外层的保护结构可防止周遭环境对光纤的伤害,如水,火,电击等.光缆分为:光纤,缓冲层及披覆.光纤和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中,芯的直径是15μm~50μm, 大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm。芯外面包围着一层折射率比芯低的玻璃封套, 以使光纤保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。光纤通常被扎成束,外面有外壳保护。 纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。
[编辑本段]光导纤维的发明和使用
1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。结果使观众们大吃一惊。人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。
人们曾经发现,光能沿着从酒桶中喷出的细酒流传输;人们还发现,光能顺着弯曲的玻璃棒前进。这是为什么呢?难道光线不再直进了吗?这些现象引起了丁达尔的注意,经过他的研究,发现这是全反射的作用,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。表面上看,光好像在水流中弯曲前进。实际上,在弯曲的水流里,光仍沿直线传播,只不过在内表面上发生了多次全反射,光线经过多次全反射向前传播。
后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝——玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。由于这种纤维能够用来传输光线,所以称它为光导纤维。
光导纤维可以用在通信技术里。1979年9月,一条3.3公里的120路光缆通信系统在北京建成,几年后上海、天津、武汉等地也相继铺设了光缆线路,利用光导纤维进行通信。
利用光导纤维进行的通信叫光纤通信。一对金属电话线至多只能同时传送一千多路电话,而根据理论计算,一对细如蛛丝的光导纤维可以同时通一百亿路电话!铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了。沙石中就含有石英,几乎是取之不尽的。
另外,利用光导纤维制成的内窥镜,可以帮助医生检查胃、食道、十二指肠等的疾病。光导纤维胃镜是由上千根玻璃纤维组成的软管,它有输送光线、传导图像的本领,又有柔软、灵活,可以任意弯曲等优点,可以通过食道插入胃里。光导纤维把胃里的图像传出来,医生就可以窥见胃里的情形,然后根据情况进行诊断和治疗。
[编辑本段]光纤系统的运用
多股光导纤维做成的光缆可用于通信,它的传导性能良好,传输信息容量大,一条通路可同时容纳十亿人通话。可以同时传送千套电视节目,供自由选看。光导纤维内窥镜可导入心脏和脑室,测量心脏中的血压、血液中氧的饱和度、体温等。用光导纤维连接的激光手术刀已在临床应用,并可用作光敏法治癌。
光导纤维可以把阳光送到各个角落,还可以进行机械加工。计算机、机器人、汽车配电盘等也已成功地用光导纤维传输光源或图像。如与敏感元件组合或利用本身的特性,则可以做成各种传感器,测量压力、流量、温度、位移、光泽和颜色等。在能量传输和信息传输方面也获得广泛的应用。
高分子光导纤维开发之初,仅用于汽车照明灯的控制和装饰。现在主要用于医学、装饰、汽车、船舶等方面,以显示元件为主。在通信和图像传输方面,高分子光导纤维的应用日益增多,工业上用于光导向器、显示盘、标识、开关类照明调节、光学传感器等,同时也用在装饰显示、广告显示。
[编辑本段]光纤的历史
1880-AlexandraGrahamBell发明光束通话传输
1960-电射及光纤之发明
1977-首次实际安装电话光纤网路
1978-FORT在法国首次安装其生产之光纤电
1990-区域网路及其他短距离传输应用之光纤
2000-到屋边光纤=>到桌边光纤
2005 FTTH(Fiber To The Home)光纤直接到家庭
[编辑本段]光纤的分类特征
按材质分,有无机光导纤维和高分子光导纤维,目前在工业上大量应用的是前者。无机光导纤维材料又分为单组分和多组分两类。单组分即石英,主要原料为四氯化硅、三氯氧磷和三溴化硼等。其纯度要求铜、铁、钴、镍、锰、铬、钒等过渡金属离子杂质含量低于10ppb。除此之外,OH-离子要求低于10ppb。石英纤维已被广泛使用。多组分的原料较多,主要有二氧化硅、三氧化二硼、硝酸钠、氧化铊等。这种材料尚未普及。高分子光导纤维是以透明聚合物制得的光导纤维,由纤维芯材和包皮鞘材组成。芯材为高纯度高透光性的聚甲基丙烯酸甲酯或聚苯乙烯抽丝制得的纤维,外层为含氟聚合物或有机硅聚合物等。
光导通信的研究和实用化,与光导纤维的低损耗密切相关。光能的损耗可否大大降低,关键在于材料纯度的提高。玻璃材料中的杂质产生的光吸收,造成了最大的光损耗,其中过渡金属离子特别有害。目前,由于玻璃材料的高纯度化,这些杂质对光导纤维的损耗影响已很小。
石英玻璃光导纤维的优点是损耗低,当光波长为1.0~1.7μm(约14μm附近),损耗只有1dB/km,在1.55μm处最低,只有0.2dB/km。高分子光导纤维的光损耗较高,1982年,日本电信电报公司利用氘化甲基丙烯酸甲酯聚合抽丝作芯材,光损耗率降低到20dB/km。但高分子光导纤维的特点是能制大尺寸,大数值孔径的光导纤维,光源耦合效率高,挠曲性好,微弯曲不影响导光能力,配列、粘接容易,便于使用,成本低廉。但光损耗大,只能短距离应用。光损耗在10~100dB/km的光导纤维,可传输几百米。
光纤主要分以下两大类:
1)传输点模数类
传输点模数类分单模光纤(Single Mode Fiber)和多模光纤(Multi Mode Fiber)。单模光纤的纤芯直径很小, 在给定的工作波长上只能以单一模式传输,传输频带宽,传输容量大。多模光纤是在给定的工作波长上,能以多个模式同时传输的光纤。 与单模光纤相比,多模光纤的传输性能较差。
2)折射率分布类
折射率分布类光纤可分为跳变式光纤和渐变式光纤。跳变式光纤纤芯的折射率和保护层的折射率都是一个常数。 在纤芯和保护层的交界面,折射率呈阶梯型变化。渐变式光纤纤芯的折射率随着半径的增加按一定规律减小, 在纤芯与保护层交界处减小为保护层的折射率。纤芯的折射率的变化近似于抛物线。
[编辑本段]光纤结构及种类
光及其特性:
1.光是一种电磁波
可见光部分波长范围是:390~760nm(毫微米)。大于760nm部分是红外光,小于390nm部分是紫外光。光纤中应用的是:850,1300,1550三种。
2.光的折射,反射和全反射。
因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。
1.光纤结构:
光纤裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为50或62.5μm),中 间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。
2.数值孔径:
入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同(AT&T CORNING)。
3.光纤的种类:
A.按光在光纤中的传输模式可分为:单摸光纤和多模光纤。
多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
单模光纤(Single-mode Fiber):一般光纤跳纤用黄色表示,接头和保护套为蓝色;传输距离较长。
多模光纤(Multi-mode Fiber):一般光纤跳纤用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。
B.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。
常规型:光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1300nm。
色散位移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300nm和1550nm。
C.按折射率分布情况分:突变型和渐变型光纤。
突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。
渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。
4.常用光纤规格:
单模:8/125μm,9/125μm,10/125μm
多模:50/125μm,欧洲标准
62.5/125μm,美国标准
工业,医疗和低速网络:100/140μm,200/230μm
塑料:98/1000μm,用于汽车控制
[编辑本段]光纤的衰减
造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。
本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。
弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。
挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。
杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。
不均匀:光纤材料的折射率不均匀造成的损耗。
对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。
[编辑本段]光纤传输优点
直到1960年,美国科学家Maiman发明了世界上第一台激光器后,为光通讯提供了良好的光源。随后二十多年,人们对光传输介质进行了攻关,终于制成了低损耗光纤,从而奠定了光通讯的基石。从此,光通讯进入了飞速发展的阶段。
光纤传输有许多突出的优点:
1。频带宽
频带的宽窄代表传输容量的大小。载波的频率越高,可以传输信号的频带宽度就越大。在VHF频段,载波频率为48.5MHz~300Mhz。带宽约250MHz,只能传输27套电视和几十套调频广播。可见光的频率达100000GHz,比VHF频段高出一百多万倍。尽管由于光纤对不同频率的光有不同的损耗,使频带宽度受到影响,但在最低损耗区的频带宽度也可达30000GHz。目前单个光源的带宽只占了其中很小的一部分(多模光纤的频带约几百兆赫,好的单模光纤可达10GHz以上),采用先进的相干光通信可以在30000GHz范围内安排2000个光载波,进行波分复用,可以容纳上百万个频道。
2.损耗低
在同轴电缆组成的系统中,最好的电缆在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输1、31um的光,每公里损耗在0.35dB以下若传输1.55um的光,每公里损耗更小,可达0.2dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。此外,光纤传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引人均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。
3.重量轻
因为光纤非常细,单模光纤芯线直径一般为4um~10um,外径也只有125um,加上防水层、加强筋、护套等,用4~48根光纤组成的光缆直径还不到13mm,比标准同轴电缆的直径47mm要小得多,加上光纤是玻璃纤维,比重小,使它具有直径小、重量轻的特点,安装十分方便。
4.抗干扰能力强
因为光纤的基本成分是石英,只传光,不导电,不受电磁场的作用,在其中传输的光信号不受电磁场的影响,故光纤传输对电磁干扰、工业干扰有很强的抵御能力。也正因为如此,在光纤中传输的信号不易被窃听,因而利于保密。
5.保真度高
因为光纤传输一般不需要中继放大,不会因为放大引人新的非线性失真。只要激光器的线性好,就可高保真地传输电视信号。实际测试表明,好的调幅光纤系统的载波组合三次差拍比C/CTB在70dB以上,交调指标cM也在60dB以上,远高于一般电缆干线系统的非线性失真指标。
6.工作性能可靠
我们知道,一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为光纤系统包含的设备数量少(不像电缆系统那样需要几十个放大器),可靠性自然也就高,加上光纤设备的寿命都很长,无故障工作时间达50万~75万小时,其中寿命最短的是光发射机中的激光器,最低寿命也在10万小时以上。故一个设计良好、正确安装调试的光纤系统的工作性能是非常可靠的。
7.成本不断下降
目前,有人提出了新摩尔定律,也叫做光学定律(Optical Law)。该定律指出,光纤传输信息的带宽,每6个月增加1倍,而价格降低1倍。光通信技术的发展,为Internet宽带技术的发展奠定了非常好的基础。这就为大型有线电视系统采用光纤传输方式扫清了最后一个障碍。由于制作光纤的材料(石英)来源十分丰富,随着技术的进步,成本还会进一步降低;而电缆所需的铜原料有限,价格会越来越高。显然,今后光纤传输将占绝对优势,成为建立全省、以至全国有线电视网的最主要传输手段。
结构原理 光导纤维是由两层折射率不同的玻璃组成。内层为光内芯,直径在几微米至几十微米,外层的直径0.1~0.2mm。一般内芯玻璃的折射率比外层玻璃大1%。根据光的折射和全反射原理,当光线射到内芯和外层界面的角度大于产生全反射的临界角时,光线透不过界面,全部反射。这时光线在界面经过无数次的全反射,以锯齿状路线在内芯向前传播,最后传至纤维的另一端。这种光导纤维属皮芯型结构。若内芯玻璃折射率是均匀的,在界面突然变化降低至外层玻璃的折射率,称为阶跃型结构。如内芯玻璃断面折射率从中心向外变化到低折射率的外层玻璃,称为梯度型结构。外层玻璃具有光绝缘性和防止内芯玻璃受污染。另一类光导纤维称自聚焦型结构,它好似由许多微双凸透镜组合而成,迫使入射光线逐渐自动地向中心方向会聚,这类纤维中心的折射率最高,向四周连续均匀地减少,至边缘为最低。
[编辑本段]生产方法
①管棒法:将内芯玻璃棒插入外层玻璃管中(尽量紧密),熔融拉丝;
②双坩埚法:在两个同心铂坩埚内,将内芯和外层玻璃料分别放入内、外坩埚中;
③分子填充法:将微孔石英玻璃棒浸入高折射率的添加剂溶液中,得所需折射率分布的断面结构,再进行拉丝操作,它的工艺比较复杂。在光导纤维通信中还可用内外气相沉积法等,以保证能制造出光损耗率低的光导纤维。光导纤维应用时还要做成光缆,它是由数根光导纤维合并先组成光导纤维芯线,外面被覆塑料皮,再把光导纤维芯线组合成光缆,其中光导纤维的数目可以从几十到几百根,最大的达到4000根
[编辑本段]光网络的结构
光网络的基本结构类型有星形、总线形(含环形)和树形等3种,可组合成各种复杂的网络结构。光网络可横向分割为核心网、城域/本地网和接入网。核心网倾向于采用网状结构,城域/本地网多采用环形结构,接入网将是环形和星形相结合的复合结构。光网络可纵向分层为客户层、光通道层(OCH)、光复用段层(OMS)和光传送段层(OTS)等层。两个相邻层之间构成客户/服务层关系。
客户层:由各种不同格式的客户信号(如SDH、PDH、ATM、IP等)组成.
光通道层:为透明传送各种不同格式的客户层信号提供端到端的光通路联网功能,这一层也产生和插入有关光通道配置的开销,如波长标记、端口连接性、载荷标志(速率、格式、线路码)以及波长保护能力等,此层包含OXC和OADM相关功能.
光复用段层:为多波长光信号提供联网功能,包括插入确保信号完整性的各种段层开销,并提供复用段层的生存性,波长复用器和高效交叉连接器属于此层.
光传送段层:为光信号在各种不同的光媒体(如G.652、G.653、G.655光纤)上提供传输功能,光放大器所提供的功能属于此层。
从应用领域来看,光网络将沿着"干线网→本地网→城域网→接入网→用户驻地网"的次序逐步渗透。

光纤就是一根玻璃纤维,通过不同的折射角度用来传输光信号,光信号通过光交换机变成数据信号,数据信号通过网线接入你公司的电脑
所以这种叫光纤接入,速度比较快,一般都是10M/秒以上,
还有一种是通过电话线来传送信号,经过一个终端猫,这种方式叫adsl传送,一般的家庭或是小企业都是这种方式,速度慢,最快也是3M/秒

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。
客服221号为你解答。微信缴费,一键查话费充值,流量、积分、账单、详单均可自助操作,方便快捷

光的速度传输 叫光纤

  • 鍏夌氦鏄粈涔堟剰鎬
    绛旓細鍏夌氦鏄竴绉嶅皢璁伅浠庝竴绔紶閫佸埌鍙︿竴绔殑濯掍粙.鏄竴鏉$幓鐠冩垨濉戣兌绾ょ淮,浣滀负璁╄鎭氳繃鐨勪紶杈撳獟浠銆傞氬父銆屽厜绾ゃ嶄笌銆屽厜缂嗐嶄袱涓悕璇嶄細琚贩娣.澶氭暟鍏夌氦鍦ㄤ娇鐢ㄥ墠蹇呴』鐢卞嚑灞備繚鎶ょ粨鏋勫寘瑕,鍖呰鍚庣殑缂嗙嚎鍗宠绉颁负銆屽厜缂嗐.鍏夌氦澶栧眰鐨勪繚鎶ょ粨鏋勫彲闃叉鍛ㄩ伃鐜瀵瑰厜绾ょ殑浼ゅ,濡傛按,鐏,鐢靛嚮绛.鍏夌紗鍒嗕负:鍏夌氦,缂撳啿灞傚強...
  • 浠涔堟槸鍏夌氦鍏夌氦浠嬬粛
    绛旓細1銆佸厜绾ゆ槸鍏夊绾ょ淮鐨勭畝鍐欙紝鏄竴绉嶇敱鐜荤拑鎴栧鏂欏埗鎴愮殑绾ょ淮锛屽彲浣滀负鍏変紶瀵煎伐鍏銆備紶杈撳師鐞嗘槸鈥滃厜鐨勫叏鍙嶅皠鈥濄傚墠棣欐腐涓枃澶у鏍¢暱楂橀敓鍜孏eorgeA.Hockham棣栧厛鎻愬嚭鍏夌氦鍙互鐢ㄤ簬閫氳浼犺緭鐨勮鎯筹紝楂橀敓鍥犳鑾峰緱2009骞磋璐濆皵鐗╃悊瀛﹀銆傗2銆佸畾涔夛細寰粏鐨勫厜绾ゅ皝瑁呭湪濉戞枡鎶ゅ涓锛屼娇寰楀畠鑳藉寮洸鑰屼笉鑷充簬鏂銆傞氬父锛屽厜...
  • 浠涔堟槸鍏夌氦?浠涔堟槸瀹藉甫?涓よ呮湁浠涔堜笉鍚?
    绛旓細鍏夌氦瀹藉甫灏辨槸锛氭妸瑕佷紶閫佺殑鏁版嵁鐢辩數淇″彿杞崲涓哄厜淇″彿杩涜閫氳锛屽湪鍏夌氦鐨勪袱绔垎鍒兘瑁呮湁鈥滃厜鐚濊繘琛屼俊鍙疯浆鎹锛鍏夌氦鏄洰鍓嶅甯︾綉缁滀腑澶氱浼犺緭濯掍粙涓渶鐞嗘兂鐨 涓绉嶏紝瀹冪殑鐗圭偣鏄紶杈撳閲忓ぇ锛屼紶杈撹川閲忓ソ锛屾崯鑰楀皬锛屼腑缁ц窛绂婚暱绛夛紝鍏夌氦浼犺緭浣跨敤鐨勬槸娉㈠垎澶嶇敤锛屽嵆鏄妸灏忓尯閲岀殑澶氫釜鐢ㄦ埛鐨勬暟鎹垎鍒皟鍒舵垚涓嶅悓娉㈤暱鐨...
  • 鍏夌氦鐨勫畾涔
    绛旓細鍏夌氦閫氬父琚墡鎴愭潫锛屽闈㈡湁澶栧3淇濇姢銆 绾よ姱閫氬父鏄敱鐭宠嫳鐜荤拑鍒舵垚鐨勬í鎴潰绉緢灏忕殑鍙屽眰鍚屽績鍦嗘煴浣擄紝瀹冭川鍦拌剢锛屾槗鏂锛屽洜姝ら渶瑕佸鍔犱竴淇濇姢灞傘傝鏄庯細9/125渭m鎸囧厜绾ょ殑绾ゆ牳涓9渭m锛屽寘灞備负125渭m锛9/125渭m鏄崟妯″厜绾ょ殑涓涓噸瑕佺殑鐗瑰緛锛50/125渭m鎸囨寚鍏夌氦鐨勭氦鏍镐负50渭m锛屽寘灞備负125渭m锛50/125...
  • 浠涔堟槸鍏夌氦
    绛旓細鍏夌氦鏄厜瀵肩氦缁寸殑绠鍐 涓鑸儏鍐典笅鎴戜滑鎵璇寸殑鍏夌氦灏辨槸閫氳繃杩欑鏉愭枡鍦ㄩ氫俊绾胯矾涓殑搴旂敤锛屽氨鏄墍璇寸殑鍏夌氦涓婄綉銆傜畝鍗曡灏辨槸閾鸿浜嗗厜缂嗙嚎璺紝鍒╃敤鍏夊绾ょ淮杩涜閫氫俊 涓婄綉銆傚妯″厜瀵肩氦缁村仛鎴愮殑鍏夌紗鍙敤浜庨氫俊锛屽畠鐨勪紶瀵兼ц兘鑹ソ锛屼紶杈撲俊鎭閲忓ぇ锛屼竴鏉¢氳矾鍙悓鏃跺绾虫暟鍗佷汉閫氳瘽銆傚彲浠ュ悓鏃朵紶閫佹暟鍗佸鐢佃鑺傜洰锛屼緵...
  • 鍏夌氦涓庡厜缂嗗尯鍒?
    绛旓細1 鍏夌紗鐨勫畾涔 鍏夌氦鐨涓績閫氬父鏄敱鐜荤拑鍒舵垚鐨勮姱锛岃姱澶栭潰鍖呭洿鐫涓灞傛姌灏勭巼姣旇姱浣庣殑鐜荤拑灏佸锛屼互浣垮皠鍏ョ氦鑺殑鍏変俊鍙风粡鍖呭眰鐣岄潰鍙嶅皠锛屼娇鍏変俊鍙峰湪绾よ姱涓紶鎾墠杩涖傜敱浜庡厜绾ゆ湰韬潪甯歌剢寮憋紝鏃犳硶鐩存帴搴旂敤浜庡竷绾跨郴缁燂紝鍥犳閫氬父琚墡鎴愭潫锛屽闈㈠姞淇濇姢澶栧3锛屼腑闂存湁鎶楁媺绾匡紝杩欏氨鏄墍璋撶殑鍏夌紗锛屽厜缂嗛氬父鍖呭惈涓鏍规垨鑰呭鏍...
  • 浠涔堟槸鍏夌氦瀹藉甫?
    绛旓細1銆佷粈涔堟槸鍏夌氦銆傚厜绾ゆ槸鎸囩敤楂樼函搴︾幓鐠冨埗鎴愮殑涓绉嶄紶杈撳伐鍏枫備互鍏変负淇℃伅杞戒綋浼犺緭淇℃伅銆傚湪缃戠粶寤鸿涓睘浜庣墿鐞嗗眰鐨勫熀纭閾捐矾銆傜浉搴旂殑锛氳繕鏈夌敤浜庝紶杈撶數淇″彿鐨勫弻缁炵嚎绛夌瓑銆傚綋鐒讹紝鍏夌氦閫氫俊鐨勫ソ澶勬槸锛氫俊鍙蜂紶杈撳畬鏁达紝甯﹀澶э紝鎶楀共鎵拌兘鍔涘己 鍥藉鎻愬嚭鍏夌氦鍏ユ埛鍚庛傛垜鍥藉紑濮嬭繘琛屽厜绾ゅ埌鎴峰竷绾夸互閫傚簲鏃ョ泭澧為暱鐨勭綉缁滈渶姹傘傚緢澶...
  • 鍏夌氦鍜屽甯︽湁浠涔堝尯鍒
    绛旓細閫氫織鏉ヨ瀹藉甫鏄綉缁滆繍钀ュ晢鎵瀹氫箟鐨勪笂缃戞湇鍔$殑绉板懠锛屾槸涓绉嶉氫俊鎶鏈傚湪鎺ュ叆缃戠粶鏃讹紝瀹藉甫涔熷彲浠ユ寚浠f櫘閫氬甯︼紝涔熸槸鐢ㄦ潵浼犺緭缃戠粶淇″彿鐨勩鍏夌氦鍒欐槸鎸囧厜绾ょ嚎璺紝鍗鍏夊绾ょ淮锛屼細鍖呭湪濉戞枡鎶ゅ涓紝浣滀负鏁版嵁浼犺緭鐨勬壙杞戒粙璐紝鍙互璇村厜绾ゆ槸瀹藉甫閲岀殑涓绉嶃傛櫘閫氬甯︿竴鑸敱8鏍圭粷缂樼殑閾滅嚎缁勬垚锛屽洜涓轰环鏍间究瀹滄墍浠ヨ骞挎硾搴旂敤...
  • 鍏夌氦鍜屽弻缁炵嚎鐨勫尯鍒槸浠涔?
    绛旓細鍏夌氦锛鍏夊绾ょ淮鐨绠鍐欙紝鏄竴绉嶇敱鐜荤拑鎴栧鏂欏埗鎴愮殑绾ょ淮锛屽彲浣滀负鍏変紶瀵煎伐鍏枫傚悓杞寸數缂嗭細鎸囨湁涓や釜鍚屽績瀵间綋锛岃屽浣撳拰灞忚斀灞傚張鍏辩敤鍚屼竴杞村績鐨勭數缂嗐傚尯鍒細1銆佸弻缁炵嚎锛氫紭鐐癸細1锛変紶杈撹窛绂昏繙銆佷紶杈撹川閲忛珮锛2锛夊竷绾挎柟渚裤佺嚎缂嗗埄鐢ㄧ巼楂樸備竴瀵规櫘閫氱數璇濈嚎灏卞彲浠ョ敤鏉ヤ紶閫佽棰戜俊鍙凤紱3锛夋姉骞叉壈鑳藉姏寮恒傚弻缁炵嚎鑳芥湁鏁...
  • 鍏夌氦鏄粈涔堝甯︽槸浠涔?
    绛旓細鎺ョ潃锛屾垜浠潵鐪嬬湅瀹藉甫銆傚湪鏃ュ父鐢熸椿涓紝鎴戜滑鎵璇寸殑瀹藉甫锛屽叾瀹炴槸鎸囨垜浠悜缃戠粶鏈嶅姟鎻愪緵鍟嗙璧佺殑涓婄綉甯﹀锛屽甯歌鐨100M瀹藉甫锛屾剰鍛崇潃鎴戜滑鍙互浠庣綉缁滀腑鎺ユ敹鏁版嵁鐨勯熷害杈惧埌浜嗘儕浜虹殑100鍏嗘瘮鐗规瘡绉掋備笉杩囷紝杩欓噷鐨勨滃甯︹濅笌鎶鏈笂鐨勫畾涔鏈夋墍鍖哄埆锛屽悗鑰呴氬父鎸囩殑鏄綉缁滅殑鐞嗚鏈楂樹紶杈撻熺巼銆傚綋鎻愬埌鈥滃灏慚鍏夌氦鈥濇椂锛...
  • 扩展阅读:光纤一年网费多少钱 ... 光纤长什么样图片 ... 光纤入户好还是网线好 ... 路由器光纤在哪个位置 ... wifi光纤线长什么样子 ... 光纤宽带长什么样子 ... 路由器的光信号闪红色 ... 家庭一般用宽带还是光纤 ... 入户宽带光纤线图片 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网