求不定积分,用换元法 用第一换元法求不定积分

\u9ad8\u6570\u7528\u6362\u5143\u6cd5\u6c42\u4e0d\u5b9a\u79ef\u5206\uff0c\u8981\u8fc7\u7a0b\uff1f

\u6709\u8be6\u7ec6\u8fc7\u7a0b\uff0c\u6362\u5143\u4e0d\u7b97\u590d\u6742\uff01


\u4e3b\u8981\u6709\u6362\u5143\u6cd5\uff0c\u5206\u90e8\u79ef\u5206\u6cd5\u3002\u7528\u6362\u5143\u6cd5\u6c42\u4e0d\u5b9a\u79ef\u5206\u6280\u5de7\u6027\u6bd4\u8f83\u5f3a\uff0c\u9700\u8981\u6709\u4e00\u5b9a\u7684\u89c2\u5bdf\u80fd\u529b\u548c\u611f\u89c9\uff0c\u4e00\u822c\u6765\u8bf4\uff0c\u5e26\u6839\u53f7\u7684\u5c31\u60f3\u529e\u6cd5\uff08\u7528\u4e09\u89d2\u4ee3\u6362\uff09\u53bb\u6389\u6839\u53f7\u3002

令√(1+t)=u,得t=u²-1,dt=2udu

∫1/[1+√(1+t)]dt
=∫2u/(1+u)du
=2∫[(1+u)-1]/(1+u)du
=2∫du-2∫1/(1+u)d(1+u)
=2u-2ln(1+u)+C
=2√(1+t)-2ln[1+√(1+t)]+C

令√(x²+a²)=t,得x²=t²-a²,dx²=2tdt

∫√(x²+a²)/xdx
=∫x√(x²+a²)/x²dx
=[∫√(x²+a²)/x²dx²]/2
=[∫2t•t/(t²-a²)dt]/2
=∫[(t²-a²)+a²]/(t²-a²)dt
=∫dt+a²∫1/(t²-a²)dt
=t+aln[(t-a)/(t+a)]/2+C
=√(x²+a²)+aln{[√(x²+a²)-a]/[√(x²+a²)+a]}/2+C

令√(1+2/x)=u,得x=2/(u²-1),dx=-4u/(u²-1)²

∫√(x²+2x)/x²dx
=∫√[4/(u²-1)²+4/(u²-1)]/[4/(u²-1)²]•[-4u/(u²-1)²]du
=-∫u√[4+4(u²-1)/(u²-1)²]du
=-2∫u²/(u²-1)du
=-2∫[(u²-1)+1]/(u²-1)du
=-2∫du-2∫1/(u²-1)du
=ln[(1+u)/(1-u)]-2u+C
=ln[(1+√(1+2/x))/(1-√(1+2/x))]-2√(1+2/x)+C

此处√(1+2/x)=u经过两次代换
首先令x=1/t,得dx=-1/t²dt,得到∫√(1+2t)/tdt,再令√(1+2t)=u,即√(1+2/x)=u

令√(e^u+1)=t,得u=ln(t²-1),du=2t/(t²-1)dt

∫1/√(e^u+1)du
=∫1/t•2t/(t²-1)dt
=∫1/(t²-1)dt
=ln[(t-1)/(t+1)]+C
=ln[(√(e^u+1)-1)/(√(e^u+1)+1)]+C

令x=1/t,得dx=-1/t²dt

∫1/x√(a²-b²x²)dx
=-∫t/√(a²-b²/t²)•1/t²dt
=-∫t²/√(a²t²-b²)•1/t²dt
=-∫1/a√[t²-(b/a)²]dt
=-ln[t+√(t²-b²/a²)]/a+C
=-ln[1/x+√(1/x²-b²/a²)]/a+C
=ln{ax/[a+√(a²-b²x²)]}/a+C

令√(1+lnx)=t,得x=e^(t²-1),dx=2te^(t²-1)

∫√(1+lnx)/xlnxdx
=∫t/(t²-1)e^(t²-1)•2te^(t²-1)dt
=2∫t²/(t²-1)dt
=2∫[(t²-1)+1]/(t²-1)dt
=2∫dt+2∫1/(t²-1)dt
=2t+ln[(t-1)/(t+1)]+C
=2√(1+lnx)+ln[(√(1+lnx)-1)/(√(1+lnx)+1)]+C

  • 涓嶅畾绉垎濡備綍鎹㈠厓?
    绛旓細锛堝綋鐒舵槸瑕佷负绉垎鏇寸畝渚胯屾湇鍔′簡^_^锛夌敤绗簩绫鎹㈠厓娉曟眰涓嶅畾绉垎 浠=t^6锛屽垯dx=6t^5 dt 鍘熷紡=鈭6t^5 /(1+t²)t^3 dt =鈭6t² /(1+t²) dt =6鈭玔1-1/(1+t²)] dt =6(t-arctan t)+C =6x^(1/6) -6arctan[x^(1/6)] +C 涓...
  • 涓嶅畾绉垎鎬庝箞鎹㈠厓?
    绛旓細涓嶅畾绉垎鎹㈠厓娉鐨勮В棰樻柟娉曪細浠涓轰竴涓彲瀵煎嚱鏁颁笖鍑芥暟f涓哄嚱鏁癋鐨勫鏁,鍒欌埆f(g(x))g'(x)=F(g(x))+C. 浠=g(x), 鍥犳du=g'(x)dx,鍒欌埆f(g(x))g'(x)=鈭玣(u)du=F(u)+C=F(g(x))+C銆傛墍璋撴崲鍏, 灏辨槸鏈潵鏄x姹傜Н鍒, 鐜板湪灏嗙Н鍒嗗彉閲忔敼涓轰簡u=g(x).瀹氱Н鍒嗘崲鍏冩硶锛氳...
  • 涓嶅畾绉垎鎹㈠厓娉濡備綍姹傝В?
    绛旓細鎹㈠厓娉璁$畻涓嶅畾绉垎 渚嬪鈭 鈭(x²+1) dx 浠=tanu锛屽垯鈭(x²+1)=secu锛宒x=sec²udu銆傗埆sec³udu =鈭 secudtanu =secutanu - 鈭 tan²usecudu =secutanu - 鈭 (sec²u-1)secudu =secutanu - 鈭 sec³udu + 鈭 secudu =secutanu - 鈭 ...
  • 鎹㈠厓娉曟眰涓嶅畾绉垎
    绛旓細褰搉鏄鏁版椂锛屸埆 (cosx)^n dx鎵嶅彲鐢鎹㈠厓娉曪紝涓嶇劧鍙兘鐢ㄩ厤瑙掑叕寮忛愭鎷嗚В锛岃繖棰樼殑n鏄伓鏁 鈭 cos^4x dx = 鈭 (cos²x)² dx = 鈭 [1/2*(1+cos2x)]² dx = (1/4)鈭 (1+2cos2x+cos²2x) dx = (1/4)鈭 dx + (1/4)鈭 cos2x d(2x) + (1/4)鈭...
  • 鐢ㄦ崲鍏冩硶姹備笉瀹氱Н鍒
    绛旓細绠鍗曞垎鏋愪竴涓嬶紝绛旀濡傚浘鎵绀
  • 鐢ㄦ崲鍏冩硶姹備笉瀹氱Н鍒
    绛旓細绗簩绫鎹㈠厓娉
  • 鎬庢牱鐢ㄦ崲鍏冩硶姹備笉瀹氱Н鍒銆
    绛旓細鍙傝冪瓟妗堜笉鏄繖鏍峰仛鐨勶紝搴旇鏄細darcsinx=1/鈭(1-x^2) dx 鎵浠ュ師涓嶅畾绉垎= 鈭 锛1/arcsin²x锛塪arcsinx =-1/arcsinx + C 浣犵敤鐨勬槸鎹㈠厓娉曪紝鍓嶉潰宸茬粡璁惧ソt鐨勫彇鍊艰寖鍥达紝t=arcsinx 瑙掔殑鑼冨洿[-蟺/2锛屜/2] 锛屾牴鎹垎姣嶄笉鑳戒负0锛屽彲浠ョ‘瀹歵鍙渶瑕 锛-蟺/2<t<蟺/2锛屽洜涓鸿繖鏍穝int...
  • 姹備笉瀹氱Н鍒,鐢ㄦ崲鍏冩硶!
    绛旓細1锛 浠わ細x=tant 锛 鈭(x^2+1)^3 = sec³t 锛宑ost = 1/鈭(x^2+1) , dx = sec²t dt 鈭1/鈭(x^2+1)^3 dx =鈭1/sec³t * (sec²t dt)=鈭玞ost dt = sint + C = tant*cost + C = x/鈭(x^2+1) + C 2锛変护: x=t^6 ,鈭1/[鈭歺 +...
  • 鐢ㄦ崲鍏冩硶姹備笉瀹氱Н鍒
    绛旓細x=sect dx=secttantdt 鍘熷紡=鈭玸ecttant/(sect*tant)*dt =鈭玠t =t+c x=1/cost cost=1/x t=arctan1/x 鍗冲師寮=arctan1/x+c
  • 鐢ㄦ崲鍏冩硶姹備笉瀹氱Н鍒
    绛旓細(4)鈭(x+2)/鈭(2x+1) dx =(1/2) 鈭(2x+1)/鈭(2x+1) dx +(3/2)鈭玠x/鈭(2x+1)=(1/2) 鈭垰(2x+1) dx + (3/4)鈭玠(2x+1)/鈭(2x+1)=(1/4) 鈭垰(2x+1) d(2x+1) + (3/2)鈭(2x+1)=(1/6) (2x+1)^(3/2) + (3/2)鈭(2x+1) +C ...
  • 扩展阅读:换元积分法解题技巧 ... 三角换元法求不定积分 ... 换元法求不定积分秘诀 ... 高数换元法求不定积分 ... 换元积分法的技巧归纳 ... 利用换元法求定积分 ... 反常积分能用换元法吗 ... 不定积分的换元法总结 ... 换元法什么时候不用换回去 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网