十字相乘法公式! 十字相乘法的技巧

\u5341\u5b57\u76f8\u4e58\u6cd5\u7684\u516c\u5f0f\u662f\u4ec0\u4e48\u5462

(x+a)(x+b)=x²+(a+b)x+ab
\u56fe\u793a\uff1a

x x
\u4e0a\u9762\u4e58\u5f97x^2\uff0c\u4e0b\u9762\u4e58\u5f97ab\uff0c\u5341\u5b57\u76f8\u52a0xb+xa\uff0c\u603b\u548c\u4e3ax²+(a+b)x+ab
a b


\u91c7\u7eb3\u5440\uff0c\u597d\u4e0d\u5bb9\u6613\u4e5f

\u5341\u5b57\u76f8\u4e58\u6cd5\u7684\u5177\u4f53\u65b9\u6cd5\uff1a\u5341\u5b57\u5de6\u8fb9\u76f8\u4e58\u7b49\u4e8e\u4e8c\u6b21\u9879\u7cfb\u6570,\u53f3\u8fb9\u76f8\u4e58\u7b49\u4e8e\u5e38\u6570\u9879,\u4ea4\u53c9\u76f8\u4e58\u518d\u76f8\u52a0\u7b49\u4e8e\u4e00\u6b21\u9879\u7cfb\u6570.
\u5e94\u7528\u5341\u5b57\u76f8\u4e58\u6cd5\u89e3\u9898\u7684\u5b9e\u4f8b\uff1a
\u4f8b1\u628am²+4m-12\u5206\u89e3\u56e0\u5f0f
\u5206\u6790\uff1a
\u672c\u9898\u4e2d\u5e38\u6570\u9879-12\u53ef\u4ee5\u5206\u4e3a-1\u00d712,-2\u00d76,-3\u00d74,-4\u00d73,-6\u00d72,-12\u00d71\u5f53-12\u5206\u6210-2\u00d76\u65f6,\u624d\u7b26\u5408\u672c\u9898
\u56e0\u4e3a 1 -2
1 \u2573 6
\u6240\u4ee5m²+4m-12=\uff08m-2\uff09\uff08m+6\uff09
\u4f8b2\u628a5x²+6x-8\u5206\u89e3\u56e0\u5f0f
\u5206\u6790\uff1a
\u672c\u9898\u4e2d\u76845\u53ef\u5206\u4e3a1\u00d75,-8\u53ef\u5206\u4e3a-1\u00d78,-2\u00d74,-4\u00d72,-8\u00d71.\u5f53\u4e8c\u6b21\u9879\u7cfb\u6570\u5206\u4e3a1\u00d75,\u5e38\u6570\u9879\u5206\u4e3a-4\u00d72\u65f6,\u624d\u7b26\u5408\u672c\u9898
\u56e0\u4e3a 1 2
5 \u2573 -4
\u6240\u4ee55x²+6x-8=\uff08x+2\uff09\uff085x-4\uff09
\u4f8b3\u89e3\u65b9\u7a0bx²-8x+15=0
\u5206\u6790\uff1a
\u628ax²-8x+15\u770b\u6210\u5173\u4e8ex\u7684\u4e00\u4e2a\u4e8c\u6b21\u4e09\u9879\u5f0f,\u521915\u53ef\u5206\u62101\u00d715,3\u00d75.
\u56e0\u4e3a 1 -3
1 \u2573 -5
\u6240\u4ee5\u539f\u65b9\u7a0b\u53ef\u53d8\u5f62\uff08x-3\uff09\uff08x-5\uff09=0
\u6240\u4ee5x1=3 x2=5
\u4f8b4\u3001\u89e3\u65b9\u7a0b 6x²-5x-25=0
\u5206\u6790\uff1a
\u628a6x²-5x-25\u770b\u6210\u4e00\u4e2a\u5173\u4e8ex\u7684\u4e8c\u6b21\u4e09\u9879\u5f0f,\u52196\u53ef\u4ee5\u5206\u4e3a1\u00d76,2\u00d73,-25\u53ef\u4ee5\u5206\u6210-1\u00d725,-5\u00d75,-25\u00d71.
\u56e0\u4e3a 2 -5
3 \u2573 5
\u6240\u4ee5 \u539f\u65b9\u7a0b\u53ef\u53d8\u5f62\u6210\uff082x-5\uff09\uff083x+5\uff09=0
\u6240\u4ee5 x1=5/2 x2=-5/3

\u6269\u5c55\u8d44\u6599\uff1a
\u5341\u5b57\u5206\u89e3\u6cd5\u7684\u65b9\u6cd5\u7b80\u5355\u6765\u8bb2\u5c31\u662f\uff1a\u5341\u5b57\u5de6\u8fb9\u76f8\u4e58\u7b49\u4e8e\u4e8c\u6b21\u9879\u7cfb\u6570\uff0c\u53f3\u8fb9\u76f8\u4e58\u7b49\u4e8e\u5e38\u6570\u9879\uff0c\u4ea4\u53c9\u76f8\u4e58\u518d\u76f8\u52a0\u7b49\u4e8e\u4e00\u6b21\u9879\u7cfb\u6570\u3002\u5176\u5b9e\u5c31\u662f\u8fd0\u7528\u4e58\u6cd5\u516c\u5f0f(x+a)(x+b)=x²+(a+b)x+ab\u7684\u9006\u8fd0\u7b97\u6765\u8fdb\u884c\u56e0\u5f0f\u5206\u89e3\u3002
\u5341\u5b57\u5206\u89e3\u6cd5\u80fd\u7528\u4e8e\u4e8c\u6b21\u4e09\u9879\u5f0f\u7684\u5206\u89e3\u56e0\u5f0f\uff08\u4e0d\u4e00\u5b9a\u662f\u6574\u6570\u8303\u56f4\u5185\uff09\u3002\u5bf9\u4e8e\u50cfax²+bx+c=(a1x+c1\uff09(a2x+c2\uff09\u8fd9\u6837\u7684\u6574\u5f0f\u6765\u8bf4\uff0c\u8fd9\u4e2a\u65b9\u6cd5\u7684\u5173\u952e\u662f\u628a\u4e8c\u6b21\u9879\u7cfb\u6570a\u5206\u89e3\u6210\u4e24\u4e2a\u56e0\u6570a1,a2\u7684\u79ef\uff0c\u628a\u5e38\u6570\u9879c\u5206\u89e3\u6210\u4e24\u4e2a\u56e0\u6570c1,c2\u7684\u79ef\uff0c\u5e76\u4f7fa1c2+a2c1\u6b63\u597d\u7b49\u4e8e\u4e00\u6b21\u9879\u7684\u7cfb\u6570b\u3002
\u90a3\u4e48\u53ef\u4ee5\u76f4\u63a5\u5199\u6210\u7ed3\u679c:ax²+bx+c=(a1x+c1\uff09(a2x+c2\uff09\u3002\u5728\u8fd0\u7528\u8fd9\u79cd\u65b9\u6cd5\u5206\u89e3\u56e0\u5f0f\u65f6\uff0c\u8981\u6ce8\u610f\u89c2\u5bdf\uff0c\u5c1d\u8bd5\uff0c\u5e76\u4f53\u4f1a\uff0c\u5b83\u7684\u5b9e\u8d28\u662f\u4e8c\u9879\u5f0f\u4e58\u6cd5\u7684\u9006\u8fc7\u7a0b\u3002\u5f53\u9996\u9879\u7cfb\u6570\u4e0d\u662f1\u65f6\uff0c\u5f80\u5f80\u9700\u8981\u591a\u6b21\u8bd5\u9a8c\uff0c\u52a1\u5fc5\u6ce8\u610f\u5404\u9879\u7cfb\u6570\u7684\u7b26\u53f7\u3002\u57fa\u672c\u5f0f\u5b50\uff1ax²+(p+q\uff09x+pq=(x+p\uff09(x+q\uff09\u3002
\u53c2\u8003\u8d44\u6599\uff1a\u767e\u5ea6\u767e\u79d1-\u5341\u5b57\u76f8\u4e58\u6cd5

要有耐心哦~

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式 (²表示平方,下同)
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b

⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立
因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x^3 -2x^2 -x(2003淮安市中考题)
x^3 -2x^2 -x=x(x^2 -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a^2 +4ab+4b^2 (2003南通市中考题)
解:a^2 +4ab+4b^2 =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m^2 +5n-mn-5m
解:m^2+5n-mn-5m= m^2-5m -mn+5n
= (m^2 -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx^2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x^2 -19x-6
分析:
1 -3
7 2
2-21=-19
解:7x^2 -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x^2 +3x-40
解x^2 +3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x^4 -x^3 -6x^2 -x+2

8、 求根法
令多项式f(x)=0,求出其根为x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )
例8、分解因式2x^4 +7x^3 -2x^2 -13x+6
解:令f(x)=2x^4 +7x^3 -2x^2 -13x+6=0
通过综合除法可知,f(x)=0根为1/2 ,-3,-2,1
则2x^4 +7x^3 -2x^2 -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图像法
令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )
例9、因式分解x^3 +2x^2 -5x-6
解:令y= x^3 +2x^2 -5x-6
作出其图像,与x轴交点为-3,-1,2
则x^3 +2x^2 -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x^3 +9x^2 +23x+15
解:令x=2,则x^3 +9x^2 +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x^3 +9x^2 +23x+15可能=(x+1)(x+3)(x+5) ,验证后的确如此。
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x^4 -x^3 -5x^2 -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x^4 -x^3 -5x^2 -6x-4=(x^2 +ax+b)(x^2 +cx+d)
= x^4 +(a+c)x^3 +(ac+b+d)x^2 +(ad+bc)x+bd
所以 解得
则x^4 -x^3 -5x^2 -6x-4 =(x +x+1)(x -2x-4)
初学因式分解的“四个注意”
因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。

因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?
如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.

又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,

即a=c,△abc为等腰三角形。

例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。

例4 在实数范围内把x4-5x2-6分解因式。

解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)

这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

比如Ax^2+Bx+C=(ax+c)(bx+d)其中A=ab,C=cd,B=ad+bc。你自己悟吧,这个很有用的。

(ax+b)(ax+c)=a²x²+a(b+c)x+bc
楼主笑纳

这种方法有两种情况。
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:
x^2+(p+q)x+pq=(x+p)(x+q)
.
②kx^2+mx+n型的式子的因式分解
如果有k=ac,n=bd,且有ad+bc=m时,
那么kx^2+mx+n=(ax+b)(cx+d).
图示如下:
a
b
×
c
d
例如:因为
1
-3
×
7
2
-3×7=-21,1×2=2,且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中
供参考!江苏吴云超祝你学习进步

  • 鏁板鍗佸瓧鐩镐箻娉鐨鍏紡鏄粈涔?
    绛旓細x²+(a+b)x+ab=(x+a)(x+b)鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤圭郴鏁锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟 鍏蜂綋姝ラ锛氬崄瀛楀乏杈圭浉涔樼瓑浜庝簩娆¢」绯绘暟锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟
  • 鍗佸瓧鐩镐箻娉鐨鍏紡
    绛旓細鍩烘湰寮忓瓙锛x^2+锛坧+q锛壪+pq=锛埾+p锛夛紙蠂+q锛夋墍璋撳崄瀛楃浉涔樻硶锛屽氨鏄繍鐢ㄤ箻娉曞叕寮(x+a)(x+b)=x^2+(a+b)x+ab鐨勯嗚繍绠楁潵杩涜鍥犲紡鍒嗚В.姣斿璇达細鎶妜^2+7x+12杩涜鍥犲紡鍒嗚В. . 涓婂紡鐨勫父鏁12鍙互鍒嗚В涓3脳4锛岃3+4鍙堟伆濂界瓑浜庝竴娆¢」鐨勭郴鏁7锛屾墍浠ヤ笂寮忓彲浠ュ垎瑙d负锛歺^2+7x+12=(x+3锛...
  • 鍗佸瓧鐩镐箻娉鍙h瘈
    绛旓細鍗佸瓧鐩镐箻娉曠殑鍙h瘈鏄:绔栧垎甯告暟浜ゅ弶楠屾í鍐欏洜寮忎笉鑳戒贡銆傚彛璇绗竴鍙:绔栧垎甯告暟浜ゅ弶楠,杩欓噷鍖呭惈浜嗕笁涓楠わ細绔栧垎浜屾椤瑰拰甯告暟椤瑰嵆鎶婁簩娆¢」鍜屽父鏁伴」鐨勭郴鏁扮珫鍚戝啓鍑烘潵2)浜ゅ弶鐩镐箻,鍜岀浉鍔狅紝鍗虫枩鍚戠浉涔樼劧鍚庣浉鍔,寰楀嚭涓娆¢」绯绘暟3)妫楠岀‘瀹氭楠屼竴娆¢」绯绘暟鏄惁姝g‘ 鍙h瘈绗簩鍙:妯啓鍥犲紡涓嶈兘涔憋紱鍗虫妸鍥犲紡妯悜鍐,...
  • 鏁板鍗佸瓧鐩镐箻娉曞叕寮
    绛旓細鏁板瓧鍗佸瓧鐩镐箻鍏紡鏄細x²+(a+b)x+ab=(x+a)(x+b)
  • 鍗佸瓧鐩镐箻娉鐨鍏紡
    绛旓細鍗佸瓧鐩镐箻娉曟槸鍥犲紡鍒嗚В涓崄鍥涚鏂规硶涔嬩竴锛屼富瑕佺敤浜庡澶氶」寮忕殑鍥犲紡鍒嗚В锛鍩烘湰寮忓瓙锛歺²+(p+q)x+pq=(x+p)(x+q)銆傛牴鎹洜寮忓畾鐞嗭紝鎵惧嚭涓鍏冨椤瑰紡f(x锛夌殑涓娆″洜寮忕殑鍏抽敭鏄眰澶氶」寮廸(x锛夌殑鏍癸紟瀵逛簬浠绘剰澶氶」寮廸(x锛夛紝瑕佹眰鍑哄畠鐨勬牴鏄病鏈変竴鑸柟娉曠殑锛岀劧鑰屽綋澶氶」寮廸(x锛夌殑绯绘暟閮芥槸鏁存暟鏃讹紝鍗虫暣...
  • 鎬庝箞鐢鍗佸瓧鐩镐箻娉銆傚崄瀛楃浉涔樻硶鍙h瘈鏄粈涔
    绛旓細鍗佸瓧鍒嗚В娉曞彛璇锛鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤圭郴鏁锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟銆傚叾瀹炲氨鏄繍鐢ㄤ箻娉曞叕寮(x+a)(x+b)=x²+(a+b)x+ab鐨勯嗚繍绠楁潵杩涜鍥犲紡鍒嗚В銆傚浜庡儚ax²+bx+c=(a1x+c1锛(a2x+c2锛夎繖鏍风殑鏁村紡鏉ヨ锛岃繖涓柟娉曠殑鍏抽敭鏄妸浜屾椤圭郴鏁癮鍒嗚В鎴愪袱涓洜鏁癮1...
  • 濡備綍鐢鍗佸瓧鐩镐箻娉瑙i?
    绛旓細涓鍏冧簩娆℃柟绋嬪崄瀛楃浉涔樻硶鍏紡锛氾紙x+1锛夛紙x+2锛=x2銆備竴銆佸崄瀛楃浉涔樻硶鐨勬柟娉 鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤圭郴鏁锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟銆 浜屻佸崄瀛楃浉涔樻硶鐨勭敤澶 1銆佺敤鍗佸瓧鐩镐箻娉曟潵鍒嗚В鍥犲紡銆2銆佺敤鍗佸瓧鐩镐箻娉曟潵瑙d竴鍏冧簩娆℃柟绋嬨備笁銆佸崄瀛楃浉涔樻硶鐨勪紭鐐 鐢ㄥ崄瀛楃浉涔樻硶鏉ヨВ棰樼殑閫熷害...
  • 鏁欐垜鍗佸瓧鐩镐箻娉
    绛旓細鍩烘湰寮忓瓙锛歺^2;+锛坧+q)x+pq=(x+p)(x+q)鎵璋鍗佸瓧鐩镐箻娉,灏辨槸杩愮敤涔樻硶鍏紡(x+a)(x+b)=x^2+(a+b)x+ab鐨勯嗚繍绠楁潵杩涜鍥犲紡鍒嗚В.姣斿璇:鎶妜^2+7x+12杩涜鍥犲紡鍒嗚В.涓婂紡鐨勫父鏁12鍙互鍒嗚В涓3*4,鑰3+4鍙堟伆濂界瓑浜庝竴娆¢」鐨勭郴鏁7,鎵浠 涓婂紡鍙互鍒嗚В涓:x^2+7x+12=(x+3)(x+4)鍙堝...
  • 鍗佸瓧鐩镐箻娉曞叕寮
    绛旓細鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤圭郴鏁锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟銆備箻娉曠殑璁$畻娉曞垯锛氭暟浣嶅榻愶紝浠庡彸杈硅捣锛屼緷娆$敤绗簩涓洜鏁版瘡浣嶄笂鐨勬暟鍘讳箻绗竴涓洜鏁帮紝涔樺埌鍝竴浣嶏紝寰楁暟鐨勬湯灏惧氨鍜岀浜屼釜鍥犳暟鐨勫摢涓浣嶅榻愩傚嚒鏄涔樻暟閬囧埌989697绛夊ぇ鏁拌仈杩愮畻鏃讹紝鏈熸硶涓猴細琚箻鏁板悗浣嶆寜10琛ュ姞琛ユ暟锛屽墠浣...
  • 鍗佸瓧鐩镐箻娉鏄粈涔
    绛旓細鏂规硶/姝ラ 鏄庣‘鍗佸瓧鐩镐箻娉鐨勬蹇靛拰鏍稿績銆傛垜浠潵鐪嬩竴涓嬭繖涓涔樻硶鍏紡(x+a)(x+b),鎴戜滑寰堝鏄撹В寰(x+a)(x+b)=x²+(a+b)x+ab銆傜幇鍦ㄥ皢瀹冮嗚繃鏉ョ湅銆傝繖鏍峰垎瑙e嚭鏉ワ紝缁撴灉瑕佹庝箞鍐欏憿锛熸垜浠户缁湅x²+(a+b)x+ab鐨勫洜寮忓垎瑙c傚鏋滀簩娆¢」绯绘暟涓嶆槸1锛屽張璇ユ庝箞鍒嗚В鍛紵鎴戜滑鐪嬩竴涓嬭繖涓緥棰...
  • 扩展阅读:十字交叉相乘图解 ... 十字相乘法100例题 ... 十字交叉相乘法公式 ... 十字相乘法教学视频 ... 十字交叉法图解 ... 因式分解万能公式口诀 ... 十字相乘练习题 ... 十字相乘法步骤图解 ... 初中十字相乘法 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网