已知数列{an}的前n项和为Sn=n^2(n∈N*),数列{bn}为等比数列,且b1=a1,2*b3=b4 已知数列{an} 的前n项和为Sn,且Sn=n2,n∈N*,...

\u5df2\u77e5\u6570\u5217{an}\u7684\u524dn\u9879\u548c\u4e3aSn\uff0c\u4e14Sn=2an-2\uff08n\u2208N*\uff09\uff0c\u6570\u5217{bn}\u6ee1\u8db3b1=1\uff0c\u4e14bn+1=bn+2\uff081\uff09\u6c42\u6570\u5217{an}\u3001{bn}

\uff081\uff09\u2235Sn=2an-2\uff0c\u2234n=1\u65f6\uff0ca1=2a1-2\uff0c\u89e3\u5f97a1=2\uff0cn\u22652\u65f6\uff0can=Sn-Sn-1=\uff082an-2\uff09-\uff082an-1-2\uff09=2an-2an-1\uff0c\u2234an=2an-1\uff0c\u2234{an}\u662f\u9996\u9879\u4e3a2\uff0c\u516c\u6bd4\u4e3a2\u7684\u7b49\u6bd4\u6570\u5217\uff0c\u2234an\uff1d2n\uff0e\u2235\u6570\u5217{bn}\u6ee1\u8db3b1=1\uff0c\u4e14bn+1=bn+2\uff0c\u2234{bn}\u662f\u9996\u9879\u4e3a1\uff0c\u516c\u5dee\u4e3a2 \u7684\u7b49\u5dee\u6570\u5217\uff0c\u2234bn=1+\uff08n-1\uff09\u00d72=2n-1\uff0e\uff082\uff09\u2235an?bn=\uff082n-1\uff09?2n\uff0c\u2234Tn\uff1d1?2+3?22+\u2026+(2n?1)?2n\uff0c\u24602Tn=1?22+3?23+\u2026+\uff082n-1\uff09?2n+1\uff0c\u2461\u2460-\u2461\uff0c\u5f97-Tn=2+2\uff0822+23+\u2026+2n\uff09-\uff082n-1\uff09?2n+1=2+2\u00d74(1?2n?1)1?2-\uff082n-1\uff09?2n+1=-2n+2-\uff082n-1\uff09?2n+1-2\uff0c\u2234Tn=\uff082n+1\uff09?2n+1+2\uff0e

\uff08I\uff09\u7531\u5df2\u77e5Sn\uff1dn2\u5f53n=1\u65f6\uff0ca1=S1=1\u5f53n\u22652\u65f6\uff0can=Sn-Sn-1=n2-\uff08n-1\uff092=2n-1\u800ca1=2\u00d71-1=1\u9002\u5408\u4e0a\u5f0f\u2234an=2n-1\uff08n\u2208N+\uff09\u2235b1=a1=1\uff0c2b3=b4\uff0e\u22342q2=q3 \u2234q=2\uff0cbn\uff1d2n?1\uff086\u5206\uff09\uff08II\uff09\u7531\uff08I\uff09\u77e5an=2n-1\u2234Cn\uff1d1(2n?1)(2n+1)=12(12n?1?12n+1)\u2234Tn\uff1d12(1?13+13?15+15?17+\u2026+12n?1?12n+1)=12(1?12n+1)=n2n+1\u2234Tn\uff1dn2n+1\uff0812\u5206\uff09

一、利用an=S1 (n=1)
=Sn-Sn-1 (n≥2)
因为{an}的前n项和为Sn=n^2(n∈N*),
a1=S1=1
n≥2;
S(n-1)=(n-1)^2=n^2-2n+1
an=Sn-Sn-1=2n-1
n=1 时;a1=2*1-1=1 ;也成立
所以an的通项公式an=2n-1

数列{bn}为等比数列,且b1=a1,2*b3=b4
b1=a1=1
2*b3=b4 得到
因为等比数列公比q=b4/b3=2

所以{bn}的通项公式
bn=b1*q^(n-1)
=2^(n-1)

二、{an*bn}的前n项和
因为an=2n-1 ;
bn=2^(n-1)
这种等差数列 乘以 等比数列;都是错位相减法;
设{an*bn}的前n项和 为 Pn
Pn=1*1+3*2+5*4+7*8+...+(2n-1)*2^(n-1)
2Pn=1*2+3*4+5*8+7*16+...+(2n-1)*2^n
Pn-2Pn=1+(3-1)*2+(5-3)*4+(7-5)*8+...+[(2n-1)-(2n-3)]*2^(n-1)-(2n-1)*2^n
=1-(2n-1)*2^n+2*(2^n-2)
=-(2n-3)2^n-3
Pn=(2n-3)2^n+3 (前面变成常见的等比数列)

1,b1=a1=S1=1。
当n>=2时,an=Sn-S(n-1)=n^2-(n-1)^2=2n-1,a1也适合此式。
2b2=2q^2=b4=q^3,解得:q=2。
所以,an=2n-1、bn=2^(n-1),其中n为正整数。
2,设Tn=1+2*2+3*2^2+…+n*2^(n-1) (1)
2*(1)得:2Tn=2+2*2^2+3*2^3+…+n*2^n (2)
(1)-(2)得:-Tn=1+2+2^2+2^3+…+2^(n-1)-n*2^n=2^n-1-n^2^n
Tn=(n-1)*2^n+1

(1)
对an:an=Sn-Sn-1=n²-(n-1)²=2n-1 (n≥2):
检验n=1时,S1=a1=1,满足通项;
故an=2n-1;
b1=a1=1
且公比为2:bn=2∧(n-1)
(2)
设Pn=an*bn=(2n-1)2∧(n-1)
用错位相减法:
2Pn-Pn=Pn=1-(2n-1)2∧n+4*∑2∧(n-2)=(3-2n)*2∧n-3

  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰Sn=n^2+2n,鏁板垪{bn}涓虹瓑姣旀暟鍒,鍏瘮q>1,涓攂2=...
    绛旓細Sn=n^2+2n a1=s1=3 a2+a1=4+4=8 a2=8-3=5 S(n-1)=(n-1)^2+2(n-1) n>=2 Sn-s(n-1)=(n-n+1)(n+n-1)+2(n-n+1)=2n+1 an=2n+1 浠e叆n=1 a1=3鎴愮珛,鏁:n>=1鏃:an=2n+1 (璁板緱鐢⊿n-s(n-1)=an鏃,瑕侀獙绠梐1鏄惁绗﹀悎)b2=b1q=4...1...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰涓篠n=n鐨勫钩鏂+2n+3 (1) 姹傛暟鍒梴an}鐨勯氶」鍏紡...
    绛旓細an=Sn-S(n-1)=n^2+2n+3-(n^2+2)=n^2+2n+3-n^2-2 =2n+1 T5=S1+S2+S3+S4+S5 =(1^2+2*1+3)+(2^2+2*2+3)+(3^2+2*3+3)+(4^2+2*4+3)+(5^2+2*5+3)=(1^2+2^2+3^2+4^2+5^2)+2(1+2+3+4+5)+(3+3+3+3+3)=5(5+1)(2*5+1)/6+2*5...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰Sn=an^2+bn+c a b c 涓哄父鏁拌瘉鏄庝粠绗簩椤瑰紑濮...
    绛旓細An = Sn-S(n-1)= an^2+bn+c-a(n-1)^2-b(n-1)-c = a(n+n-1)(n-n+1)+b(n-n+1)= a(2n-1)+b 鎵浠 A(n-1) = a[2(n-1)-1]+b = a(2n-3)+b 鎵浠 An-A(n-1) = a(2n-1)+b-a(2n-3)-b = 2a 鏄父鏁 鎵浠鏁板垪{An}浠庣浜岄」璧凤紝鏄叕宸负2a鐨勭瓑宸...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰涓篠n=n²+(1/2)n,姹傝繖涓暟鍒楃殑閫氶」鍏紡,杩欎釜鏁...
    绛旓細瑙o細褰搉鈮2鏃讹紝鏈塧n=Sn-S(n-1)浜庢槸an=n²+(1/2)n-(n-1)²-(1/2)(n-1)=2n-1/2 褰搉=1鏃讹紝鐢盨n=n²+(1/2)n寰梐1=S1=1+1/2=3/2閫傚悎an=2n-1/2 鎵浠鏁板垪{an}鐨閫氶」鍏紡鏄痑n=2n-1/2 鍥犱负an=2n-1/2 鎵浠n-a(n-1)=2n-1/2-2(n-1)+1/2=2...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰涓篠n,涓擲n=2an-2(n=1,2,3...),鏁板垪{bn}涓,b1=1...
    绛旓細瑙o細锛1锛夌敱Sn = 2an鈥2 鍙緱锛屽綋n=1鏃讹紝S1 = a1 = 2 a1鈥2 瑙e緱a1 = 2 鍙圫n-1 = 2an-1鈥2 鍒橲n 鈥 Sn-1 = an = 2an鈥2鈥旓紙2an-1鈥2锛=2an鈥2an-1 鏁寸悊鍙緱锛宎n = 2 an-1 锛屼负绛夋瘮鏁板垪锛屽叕姣斾负q = 2 鏁卆n = a1•qn-1 = 2•2n-1 = 2n ...
  • 宸茬煡an鐨勫墠n椤瑰拰涓簊n=1/1+n+鈥+1/n+n,姹傜骇鏁颁竴鑸」鍙婂拰s
    绛旓細1/S[n]=(1/n)-1/(n+1)=1/(n^2+n)S[n]=n^2+n a[1]=S[1]=2 n鈮2鏃 a[n]=S[n]-S[n-1]=(n^2+n)-((n-1)^2+(n-1))=2n 鎵浠ワ紝鏁板垪鐨閫氶」鍏紡a[n]=2n (n鈭N*锛宯=1楠岃瘉寰)
  • (1/2)宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰涓篠n,棣栭」涓篴1,涓1,an,Sn鎴愮瓑宸暟鍒椼 1...
    绛旓細1銆乤n銆Sn鎴愮瓑宸紝鍒欙細2an=1锛婼n锛屽垯褰搉鈮2鏃讹紝鏈夛細2a(n锛1)=1锛婼(n锛1)锛屼袱寮忕浉鍑忥紝寰楋細2an锛2a(n锛1)=Sn锛峉(n锛1)=an锛屾墍浠ワ紝an=2a(n锛1)锛屽嵆锛歔an]/[a(n锛1)]=2=甯告暟锛鏁板垪{an}鏄绛夋瘮锛岄椤规槸a1銆佸叕姣旀槸q=2 ...
  • 宸茬煡Sn涓鏁板垪{an}鐨勫墠n椤瑰拰,a1=1,Sn=nan,姹傛暟鍒梴an}鐨勯氶」鍏紡...
    绛旓細Sn=nan,S(n-1)=(n-1)a(n-1),鐩稿噺锛歛n=nan - (n-1)a(n-1),鈭(n-1)an=(n-1)a(n-1),an=a(n-1)锛屽嵆an=1
  • 宸茬煡鏁板垪[an}鐨勫墠n椤瑰拰涓簊n,涓旀湁a1...
    绛旓細=s(n)-s(n+1)/s(n)s(n+1)=2a(n+1)/a(n+1)=2 鍥犱负a1=s1=1/2 鎵浠2=-2s2s1 =-1(1/2+a2)鎵浠2=-1/4 s2=1/4 鎵浠1=2 b2=4 鎵浠ュ綋n>=2鏃禸(n)=2n 鍙堝洜涓篵1=2 鎵浠bn}鏄浠2涓洪椤癸紝鍏樊涓2鐨勭瓑宸鏁板垪 鎵浠n=2n p(n)=n(n+1)ps:鏍煎紡鍙兘鏈夌偣閿欙紝...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰涓篠n,涓擲n=2an-2,姹傞氶」鍏紡銆(鎬ラ)
    绛旓細Sn=2an-2 閭d箞 S(n+1)=2a(n+1)-2 涓ゅ紡鐩稿噺 S(n+1)-Sn=2a(n+1)-2an a(n+1)=2a(n+1)-2an a(n+1)=2an 鎵浠an鏄浠2涓哄叕姣旂殑绛夋瘮鏁板垪 褰搉=1鏃 s1=2a1-2=a1 鎵浠1=2 鎵浠n=2^n
  • 扩展阅读:已知数列{an}满足 ... 已知数列 an 中 a1 1 ... 等差数列必背公式 ... an数列公式大全 ... 已知前n项和求an的方法 ... 己知数列an的通项公式 ... 设数列{an}满足 ... 已知sn求an的十个题目 ... 已知等差数列{an}的前n项和为sn ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网