陈畅的主要研究方向 陈畅的介绍

neurodegenerative diseases\u662f\u4ec0\u4e48\u610f\u601d

neurodegenerative diseases

\u795e\u7ecf\u9000\u884c\u6027\u75be\u75c5

\u5982\u679c\u4f60\u5bf9\u8fd9\u4e2a\u7b54\u6848\u6709\u4ec0\u4e48\u7591\u95ee\uff0c\u8bf7\u8ffd\u95ee\uff0c
\u53e6\u5916\u5982\u679c\u4f60\u89c9\u5f97\u6211\u7684\u56de\u7b54\u5bf9\u4f60\u6709\u6240\u5e2e\u52a9\uff0c\u8bf7\u5343\u4e07\u522b\u5fd8\u8bb0\u91c7\u7eb3\u54df\uff01

\u9648\u7545\uff1a\u5973\uff0c\u5357\u5f00\u5927\u5b66\u5386\u53f2\u5b66\u9662\u8bb2\u5e08\uff0c2008\u5e74\u6bd5\u4e1a\u4e8e\u5409\u6797\u5927\u5b66\u8003\u53e4\u5b66\u53ca\u535a\u7269\u9986\u5b66\u4e13\u4e1a\u3002\u7814\u7a76\u65b9\u5411\uff1a\u6587\u7269\u4e0e\u535a\u7269\u9986\u5b66\u7cfb\u3002

细胞的氧化还原调控失衡是导致亚健康、衰老、神经退行性疾病、炎症、肿瘤、糖尿病等的重要因素,因此,细胞氧化还原调控的分子机理研究具有重要理论和实际意义。近年研究发现:机体在应激条件下产生的一氧化氮等活性氮及活性氧小分子通过对蛋白质中氧化还原敏感的半胱氨酸巯基进行修饰,影响蛋白的结构、活性、定位、组装和降解,从而调控蛋白的功能和细胞信号传导,最终在生理和病理过程中发挥作用。这种修饰称为氧化还原依赖的蛋白翻译后修饰(Redox based post-translational modification of protein),包括:亚硝基化修饰(-SNO)、不同程度的氧化修饰(-S-S-; -S-OH; -SO3)、谷胱甘肽化修饰(-SSG)等,与磷酸化修饰一样,是两种进化上高度保守的蛋白翻译后修饰之一。我们致力于揭示生命活动中这些小分子和大分子的对白,揭示氧化还原依赖的蛋白质巯基翻译后修饰在细胞命运和疾病发生中的作用。重点研究一氧化氮生物活性及其对蛋白巯基的亚硝基化修饰在细胞信号转导中的作用。主要有以下三个方面。
1、蛋白质巯基修饰的功能和方法研究。
2、氧化应激/氮应激(oxidative stress/nitrosative stress)在疾病发生发展中的作用机理以及天然产物/中医药的调控和应用
3、肌醇磷脂4位激酶phosphatidylinositol 4-kinase type IIα (PI4KIIα)和一氧化氮代谢调控蛋白S-nitrosoglutathione reductase (GSNOR)的功能与分子机制研究。
主要成果:
? 揭示了亚硝基化修饰在调控蛋白核质转运中的作用,发现一氧化氮通过亚硝基化修饰调控核输出受体CRM1的功能,扩展了对核输出调控机制和一氧化氮生物学功能的认识。揭示了亚硝基化-泛素化-SUMO化三种蛋白质翻译后修饰的相互调控,本工作提示:调控其它蛋白质翻译后修饰可能是巯基亚硝基化修饰发挥作用的重要途径。
? 揭示了NO代谢调控对学习记忆的调控作用,率先提出NO生物活性受合成和代谢双调控的观点,部分揭示了NO代谢酶GSNOR在神经系统的生理意义。
? 发展定量高通量亚硝基化检测方法解决了内源亚硝基化检测难题;发现和排除了亚硝基化检测中的假阳性信号,引起本领域的广泛关注;尤其是我们建立了不可逆亲和素标记方法(IBP), 是目前唯一能排除分子间二硫键干扰及-SSH巯基修饰的特异亚硝基化检测方法。
? 发现新的肿瘤生长调控蛋白Phosphatidylinositol 4-kinase type IIα,PI4KIIα. 该蛋白α亚型特异地调控HER-2/PI3K,ERK1/2 信号通路,调控HIF-1α蛋白的合成,影响了HIF-1下游促血管生成因子VEGF,iNOS等蛋白的表达,影响内皮细胞的成管及迁移能力进而影响血管新生,最终调控肿瘤的生长目前我们已构建PI4KIIα转基因鼠,正在进行PI4KIIα在肿瘤细胞转移方面的机理研究。
Biography & Introduction
Chang CHEN,PhD, Professor of Institute of Biophysics, ChineseAcademy of Sciences
1996, Ph.D. of Peking University
1998, associate professor of Institute of Biophysics, CAS;
1998-2000, visiting scientist in Institute of Food Research, UK; 2000- PI, Institute of Biophysics (2004, full professor), CAS.
Professional activities:
? Vice-president of the Society of Free Radical Biology and Medicine, China.
? Associated editor of the journal “Acta Biophysica Sinica” (the offical journal of the Biophysics Society of China).
? Editorial board member of “The Open Nitric Oxide Journal”.
? Editorial board member of “Progress in Biochemistry and Biophysics”.
Research interests:
Bioactivity of nitric oxide and redox-based protein thiol modification; Natural product development;Functional study of phosphatidylinositol 4-kinase type IIα (PI4KIIα) andS-nitrosoglutathione reductase (GSNOR) in transgenic mice.
NO, as a putative messenger, is implicated in physiological and pathological processes. Apart from the well-known cGMP-dependent signaling pathway of NO, there is also a cGMP-independent pathway that involves S- nitrosylation. S- nitrosylation is a ubiquitous redox-related modification of cysteine thiols by nitric oxide, which transduces the bioactivity of NO. The mechanism and the cellular effects of this redox-based post-translational modification of proteins are not well understood. Our approach to understanding this process involves three aspects:
1) Investigation of the effects of NO on the properties of proteins, such as folding kinetics, stability, enzyme activity and protein-protein interactions, complex assembling. This part of the work provides a basis for the study of the cellular effects.
2) We are interested in investigating how SNO affects intracellular events, such as protein localization, protein-protein interactions, and how NO and SNO affect the apoptosis and differentiation cascade. We are also screening natural products for activity as anti-oxidative/nitrosative stress agents.
3) Investigation of the effects of NO and SNO at the level of the whole organism, such as in memory, diseases (diabetes, cancer, neurodegenerative diseases).
As the chief scientist, Prof. Chen has been awarded several research grants, including from the National Basic Research Program of China (or 973 Program), the National High Technology Research and Development Program (863 Program), and the National Natural Science Foundation of China (NSFC), and the Yong scientist group project of Chinese Academy of Sciences, and the Chinese Academy of Sciences Knowledge Innovation Project.
Selected Publications(*as the corresponding author, total =39)
1. Q. L. Hou, H. Q. Jiang, X. Zhang, C. Guo, B. Huang, P. Wang, T. P. Wang, K. Y. Wu; J. Li, Z. F. Gong; L. B. Du, Y. Liu, L. Liu, and Chang Chen*.Nitric oxide metabolism controlled by formaldehyde dehydrogenase (fdh, homolog of mammalian GSNOR) plays a crucial role in visual pattern memory in Drosophila. Nitric Oxide: Biology and Chemistry(2011) 24, 17-24.
2. X. Zhang, B. Huang, X. Zhou, andChang Chen*.Quantitative proteomic analysis of S-nitrosated proteins in diabetic mouse liver with ICAT switch method.Protein & Cell(2010) 1(7), 675-87.
3. B. Huang and Chang Chen*.Detection of protein S-nitrosation using irreversible biotinylation procedures (IBP). Free Radic. Biol. Med. (2010) 49, 447–456.
4. X. Zhou, P. Han, J. Li, X. Zhang, B. Huang, and Chang Chen*.ESNOQ, proteomic quantification of endogenous S-nitrosation. PLoS ONE(2010) 5(4): e10015. doi:10.1371/journal.pone.0010015.
5. J. M. Li, Y. Lu, J. H. Zhang, H. Kang, Z. H. Qin,and Chang Chen*. PI4KIIα is a novel regulator of tumor growth via its action on angiogenesis and HIF-1α regulation. Oncogene(2010) 29, 2550-2559.
6. J. Zhuang, T. X. Jiang, D. Lu, Y. T. Luo, C. G. Zheng, J. Feng, D. L. Yang, Chang Chenand X. Y. Yan. NADPH oxidase 4 mediates reactive oxygen species induction of CD146 dimerization in VEGF signal transduction. Free Radic. Biol. Med.(2010) 49, 227-236.
7. P. Wang, G. H. Liu, K. Y. Wu, J. Qu, B. Huang, X. Zhang, X. Zhou, L. Gerace, and Chang Chen*.Repression of classical nuclear export by S-nitrosylation of CRM1.J. Cell Sci.(2009) 122, 3772-3779.
8. S. J. Duan, L. Wan,W. J. Fu, H. Pan, Q. Ding, and Chang Chen, P. W. Han, X. Y. Zhu, L. Y. Du, H. X. Liu, Y. X. Chen, X. M. Liu, X. T. Yan, M. H. Deng, and M. P. Qian. Nonlinear cooperation of p53-ING1-induced bax expression and protein S-nitrosylation in GSNO-induced thymocyte apoptosis: a quantitative approach with cross-platform validation. Apoptosis(2009) 14(2), 236-45.
9. P. W. Han, X. Zhou, B. Huang, X. Zhang, and Chang Chen*,On-gel fluorescent visualization and the site identification of S-nitrosylated proteins. Anal. Biochem.(2008) 377, 150-155.
10. P. W. Han and Chang Chen*.Detergent-free biotin switch combined with LC-MS/MS in analysis of S-nitrosylated proteins. Rapid Commun. Mass Spectrom. (2008) 22(8), 1137-1145.
11. S. J. Duan and Chang Chen*. S-nitrosylation/denitrosylation and apoptosis of immune cells. Cell. Mol. Immunol.(2007) 4 (5), 353-358.
12. J. Qu, G.-H. Liu, K. Y. Wu, P. W. Han, P. Wang, J. M. Li, X. Zhang, and Chang Chen*. Nitric oxide destabilizes Pias3 and regulates sumoylation. PLoS ONE(2007) 2(10): e1085. doi:10.1371/ Journal.pone.0001085.
13. J. Qu., G.-H. Liu, B. Huang, and Chang Chen*.Nitric oxide controls nuclear export of APE1/Ref-1 through S-nitrosation of cysteines 93 and 310. Nucleic Acids Res. (2007) 35, 2522-2532.
14. J. He, T. P. Wang, P. Wang, P. W. Han, and Chang Chen*,A novel mechanism underlying the susceptibility of neuronal cells to nitric oxide: the occurrence and regulation of protein S-nitrosylation is the checkpoint. J. Neurochem.(2007) 102, 1863–1874.
15. B. Huang and Chang Chen*.An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic. Biol. Med. (2006) 41, 562–567.
16. J. He, H. J. Kang, F. Yan, andChang Chen*.The endoplasmic reticulum-related events in S-nitrosoglutathione -induced neurotoxicity in cerebellar granule cells.Brain Res.(2004) 1015, 25-33.
17. B. Huang, J. S. Zhang, J. W. Hou, and Chang Chen*.Free radical scavenging efficiency of nano-Se in vitro. Free Radic. Biol. Med.(2003) 35(7), 805-813.
18. Taotao Wei, Chang Chen,Jingwu Hou, Wenjuan Xin and Akitane Mori. Nitric oxide induces oxidative stress and apoptosis in neuronal cells. Biochimica et Biophysica Acta,Mol. Cell Res.(2000)1498, 72-79.
19. Chang Chen, H. R. Tang, L. Sutcliffe, and P. Belton, Green tea polyphenols scavenge 1,1-dipenyl-2- picryl-hydrazyl free radicals in the bilayer of liposomes- Direct evidence from ESR studies. J. Agric.Food Chem.(2000) 8, 5710-5714.
20. Chang Chen, T. Wei, Z. H. Gao, B. Zhao, J. W. Hou, H. Xu, W. J. Xin, and L. Packer. Different effects of the constituents of EGb761 on apoptosis in rat cerebellar granule cells induced by hydroxyl radicals, Biochem. Mol. Biol. Int.(IUBMB Life) (1999) 47, 397-405.
国家发明专利:
1. 特异检测蛋白质或多肽半胱氨酸巯基修饰的方法及其用途,申请号为200910084155.7
2. 肌醇磷脂4位激酶二型α亚型PI4KIIα的应用,申请号为200810104272.0



  • 鐢熺墿--涓庣濞冩湁鍏崇殑闂
    绛旓細鐔婄尗銆佽佽檸銆侀緳銆佸瓩鎮熺┖銆佹嫧娴紦浠ュ強闃跨6浠朵綔鍝佽瀹氫负鍖椾含濂ヨ繍浼氬悏绁ョ墿鐨勪慨鏀鏂瑰悜銆傛牴鎹帹鑽愯瘎閫夊鍛樹細鐨勬剰瑙,鍖椾含濂ョ粍濮旀垚绔嬩簡鐢卞伐鑹虹編鏈ぇ甯堥煩缇庢灄浠荤粍闀,鍥藉唴璁捐銆佸姩婕敾涓撲笟浜哄+9浜虹粍鎴愮殑鍚夌ゥ鐗╀慨鏀瑰垱浣滃皬缁勩備粠12鏈堜笅鏃紑濮,鍖椾含濂ョ粍濮斿娆″彫寮涓撻浼氳杩涜鐮旂┒,鎻愬嚭淇敼鎰忚銆傚寳浜ゥ缁勫鎵у浼氫袱娆′笓棰樺璁悏绁...
  • 浜ら氬畨鍏ㄦ椿鍔ㄤ富鎸佽瘝
    绛旓細涓烘,浠闄堢晠涓洪鐨勮皟鏌ュ皬缁勮繕涓撻棬鍋氫簡璋冩煡銆傛垜浠竴璧峰幓鐪嬬湅鍚! (璇句欢浠嬬粛浠栦滑璋冩煡鐨勭粨鏋溿婂鎵炬牎鍥腑鐨勪笉瀹夊叏鍥犵礌銆,涓昏灏变粙缁嶆牎鍥噷鍙兘鍙戠敓瀹夊叏浜嬫晠鐨勮瑙掕惤钀,浠ュ強涓浜涚壒鍒笉娉ㄦ剰鍚庡鏄撳紩璧风殑瀹夊叏闅愭偅琛屼负銆 鍚屽A;鎴戝彂鐜颁笅璇剧殑鏃跺欏拰鍚屽鍧愬湪妤兼鍙伴樁涓婄湅璇惧涔,杩欐槸涓嶅畨鍏ㄧ殑琛屼负銆 鍚屽B:鎴戝彂鐜版湁浜涘悓瀛﹀湪...
  • 鑹█鍐欐剰涓昏鍐呭澶ф璁蹭簡浠涔
    绛旓細灏辫繛璁ㄨ搴︽渶楂樼殑杩樻槸琚獋鐨勬渶鍑剁殑銆婁綘鐨勫井绗戞椂寰堢編銆,闄や簡璺熻鍑殑cp鎰,鐢电珵鏂瑰悜鍓ф儏琚悙妲戒竴鏃犳槸澶勩傚浜庣綏浜戠啓璺熺▼娼囩殑棣栨鍚堜綔,浣犵湅濂藉悧? 鑹█鍐欐剰涓昏鍐呭澶ф璁蹭簡浠涔2 浠婃棩,鐢闄堢晠瀵兼紨鎵у,浼侀箙褰辫銆侀噾绂惧奖瑙嗐佺暀鐧藉奖瑙嗚仈鍚堝嚭鍝,缃椾簯鐔欍佺▼娼囬琛斾富婕,瀛h倴鍐般佺敯渚濇銆侀珮瀵掋佹潕浣虫磥銆佹堡鏅跺獨銆佺姊撳噣銆...
  • 璧风偣瀹夊窘鐪佹瘺闆嗗尯鍒板畨寰界渷闃滈槼甯傞涓婂幙鏉ㄦ箹闀囨庝箞鍋氳溅銆婃庝箞璧般媉鐧惧害...
    绛旓細甯傚悏绁ヨ緰5涓閬,10涓晣,4涓琛楅亾鐨勫煄甯傝閬,绻佸崕鐨勮閬撲笢椹潑琛楅亾闀挎睙鍙h閬撶敯娲嬮晣,涓夊悎闀囬儙鍚涙涔夊煄甯傞粍婊╅晣澶╅箙闀,闄堢晠闀囨磱闀囨堡姹犲畨闄嗗競涓や釜琛楅亾,9涓晣,4涓埂:鍙板崡琛,鍗楀煄琛楅亾,鏉庤嚮,璧垫闀囧贰閫,闀囧杩晣闆峰叕闀,鐜嬪尰鐢ㄩ拡澶撮渿鍦洪晣鐑熷簵闀囨梾娓,闄堝簵涔,涓芥按甯傞懌缁翠含浜埂鏈ㄥ瓙涔,瀹橀晣姹夊窛甯傝閬,14涓晣,6...
  • 鍎跨鏈熸湯瀹堕暱璇勮
    绛旓細瀛╁瓙鏈熸湯璇勮瀹堕暱璇勮锛1銆佸瀛愶紝濡堝寰堟鎱扮湅鍒颁綘鍦ㄥ姫鍔涚殑瀛︿範锛屽笇鏈涗綘鍙互鍦ㄤ笅瀛︽湡缁х画鍔姏锛屼綘寰堣仾鏄庯紝涔熸湁寰堝ぇ鐨勬綔鍔涳紝瑕佸厖鍒嗗彂鎸ヤ綘鐨勬櫤鎱с傛垜浠篃涓烘槸浣犵殑鐖舵瘝鑰岄獎鍌层2銆佸瀛愶紝涓涓鏈熺粨鏉熶簡锛屽彲鑳芥垚缁╀笉鏄緢鐞嗘兂锛屼絾鏄濡堢浉淇′綘涔熷敖鍔涗簡锛屽湪涓嬩竴涓鏈燂紝鎴戜滑瀹堕暱涓瀹氫細鑺辨洿澶氱殑鏃堕棿鏉ュ府鍔╁瀛...
  • 鏈夊摢浜涘煎緱鎺ㄨ崘鐨勬不鎰堢郴鐢佃鍓?
    绛旓細璇ュ墽鏄敱闄堢晠鎵у锛屽惔纾娿佸懆闆ㄥ饯棰嗚涓绘紨锛屽浣╃懚銆佹湵娉宠吘銆佺珷娑涚瓑涓绘紨锛屾秱鏉惧博銆侀儹鏌畤鐗归個涓绘紨鐨勯兘甯傛儏鎰熷墽銆傝杩颁簡缇借浆缃戣繍鍔ㄥ憳瀹嬩笁宸濆拰鎬昏鐗瑰姪杞亴涓氱粡鐞嗕汉鐨勬鍙嬪畨锛屽湪閬亣鑱屼笟褰掗浂鍙婁汉鐢熷洶澧冧箣鍚庯紝鍚屾媴椋庨洦骞惰偐鍓嶈鐨勯亾璺腑锛岄愭笎娌绘剤褰兼銆佸浼氬媷鏁㈠幓鐖辩殑鏁呬簨銆傛帹鑽愮悊鐢憋細鐩歌緝浜庡叾浠栭兘甯傜埍鎯呭墽锛屻...
  • 2023骞村嵆灏嗕笂鏄犵殑鐢佃鍓т腑,浣犳渶鏈熷緟鐨勬槸鍝竴閮ㄤ綔鍝?
    绛旓細鎴戞渶鏈熷緟鐨勬槸銆婂ソ浜嬫垚鍙屻嬨11鏈3鏃ワ紝鐢卞紶灏忔枑銆侀粍鏅撴槑銆佸紶鍢夊佹潕娉介攱棰嗚涓绘紨鐨勯兘甯傚コ鎬у姳蹇楁儏鎰熷墽銆婂ソ浜嬫垚鍙屻嬫寮忓紑鏈猴紝璇ュ墽灏嗚仛鐒﹀湪閮藉競濂虫у浣曞湪瀹跺涵銆佷簨涓氥佺埍鎯呬腑濡備綍鎵惧鑷垜鐨勭幇瀹為棶棰樸傝鍓ц杩颁簡鍏ㄨ亴澶お鏋楀弻锛堝紶灏忔枑 楗帮級鍦ㄦ鍏ュ濮诲骞村悗鐢熸椿绐侀㈠彉鏁呭洖褰掕亴鍦猴紝闈㈠绋抽噸鍠勮壇鐨勬晠鍙嬮【璁革紙...
  • 鍗楀紑鑰冨彜绯荤殑瀵煎笀浠嬬粛
    绛旓細涓昏浠庝簨涓浗闄剁摲鑰冨彜銆佷腑鍥藉彜浠g帀鍣ㄣ佺Е姹夌墿璐ㄦ枃鍖栫殑鐮旂┒,涓昏鈥滀腑鍥藉彜浠g帀鍣ㄢ濆拰鈥滅Е姹夌墿璐ㄦ枃鍖栤濈瓑鏈鐢熻绋嬨6.闄堢晠 (鍓暀鎺)鐮旂┒鏂瑰悜鍏堢Е鏃舵湡鑰冨彜涓庣墿璐ㄦ枃鍖栫爺绌朵釜浜虹畝浠嬮檲鐣,濂,1980骞12鏈堢敓浜,2003骞存瘯涓氫簬澶╂触澶у鍦熸湪宸ョ▼涓撲笟,鍚屽勾鑰冨叆鍚夋灄澶у鏂囧闄㈣冨彜瀛﹀強鍗氱墿棣嗗涓撲笟,2005骞寸鍗氳繛璇,2008骞磋幏鍗氬+瀛︿綅,...
  • 鎬ユ眰涓绡囪鏂,棰樼洰濡備笅!!!鏁戝懡!!
    绛旓細杩欎簺鐮旂┒涓哄憳宸ユ弧鎰忓害缁村害鐨勭瀛﹀垝鍒嗘湁鐫鍗佸垎閲嶈鐨勫奖鍝嶃 鍖椾含澶у鐨闄堢晠2002骞村湪銆婅璇嗗憳宸ユ弧鎰忓害銆嬩竴鏂,灞变笢澶у绠$悊瀛﹂櫌鐨勮阿姘哥弽銆佽档浜幉2001骞村湪銆婁紒涓氬憳宸ユ弧鎰忓害鎸囨爣浣撶郴鐨勫缓绔嬩笌璇勪环妯″瀷銆嬬殑鏂囩珷涓,閮芥彁鍑轰簡鍛樺伐婊℃剰搴︾殑璇勪环鎸囨爣浣撶郴鍖呮嫭浠ヤ笅5鏂归潰16涓洜绱:瀵瑰伐浣滄湰韬殑婊℃剰搴(宸ヤ綔鍚堥傚害,璐d换鍖归厤搴,宸ヤ綔鎸戞垬鎬,...
  • 澶у鐢熷叕鐩婃椿鍔ㄥ舰寮忓唴瀹
    绛旓細銆2銆戝氨涓氬垱涓氫富棰樺伐浣滃潑 娲诲姩鏃堕棿:姣忔湡1澶 4鏈堜腑鏃6鏈堜笅鏃 娲诲姩褰㈠紡:鍏ㄥぉ涓婚鍐呭璁粌 娲诲姩鍦扮偣:8澶т富鍔為珮鏍(鍙傝4銆佺粍缁囧崟浣嶄笅涓诲姙楂樻牎) 涓婚鍒楄〃: A鑱屼笟瑙勫垝宸ヤ綔鍧 銆愪富璁:闄堢晠 鐭ラ亣缃慍EO銆 閫氳繃杈呭鍜屽洟闃熸椿鍔ㄦ帰绱㈠叴瓒e拰娼滃姏,鍒嗕韩鎴愰暱缁忛獙,婢勬竻鍥版儜,鎻愬崌鑷俊, 鎵惧埌閫傚悎鑷繁鐨勮亴涓氬彂灞鏂瑰悜銆 B鑱屼笟鏁欑粌宸ヤ綔鍧...
  • 扩展阅读:课题研究方向怎么写 ... 论文研究方向怎么填 ... 课题八个研究方向 ... 论文研究方向填写示例 ... 自动化考研最佳方向 ... 论文研究方向15个字 ... 课题研究的五个方向 ... 护理学研究方向有哪些 ... 常用的八种研究方法 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网