光速是怎么测出来的

\u5149\u901f\u662f\u600e\u4e48\u6d4b\u51fa\u6765\u7684\uff1f

\u6700\u65e9\u5149\u901f\u7684\u51c6\u786e\u6570\u503c\u662f\u901a\u8fc7\u89c2\u6d4b\u6728\u661f\u5bf9\u5176\u536b\u661f\u7684\u63a9\u98df\u6d4b\u91cf\u7684\u3002\u8fd8\u6709\u8f6c\u52a8\u9f7f\u8f6e\u6cd5\u3001\u8f6c\u955c\u6cd5\u3001\u514b\u5c14\u76d2\u6cd5\u3001\u53d8\u9891\u95ea\u5149\u6cd5\u7b49\u5149\u901f\u6d4b\u91cf\u65b9\u6cd5\u3002
1983\u5e74\uff0c\u5149\u901f\u53d6\u4ee3\u4e86\u4fdd\u5b58\u5728\u5df4\u9ece\u56fd\u9645\u8ba1\u91cf\u5c40\u7684\u94c2\u5236\u7c73\u539f\u5668\u88ab\u9009\u4f5c\u5b9a\u4e49\u201c\u7c73\u201d\u7684\u6807\u51c6\uff0c\u5e76\u4e14\u7ea6\u5b9a\u5149\u901f\u4e25\u683c\u7b49\u4e8e299,792,458\u7c73/\u79d2\uff0c\u6b64\u6570\u503c\u4e0e\u5f53\u65f6\u7684\u7c73\u7684\u5b9a\u4e49\u548c\u79d2\u7684\u5b9a\u4e49\u4e00\u81f4\u3002\u540e\u6765\uff0c\u968f\u7740\u5b9e\u9a8c\u7cbe\u5ea6\u7684\u4e0d\u65ad\u63d0\u9ad8\uff0c\u5149\u901f\u7684\u6570\u503c\u6709\u6240\u6539\u53d8\uff0c\u7c73\u88ab\u5b9a\u4e49\u4e3a1/299,792,458\u79d2\u5185\u5149\u901a\u8fc7\u7684\u8def\u7a0b\u3002
\u6839\u636e\u73b0\u4ee3\u7269\u7406\u5b66\uff0c\u6240\u6709\u7535\u78c1\u6ce2\uff0c\u5305\u62ec\u53ef\u89c1\u5149\uff0c\u5728\u771f\u7a7a\u4e2d\u7684\u901f\u5ea6\u662f\u5e38\u6570\uff0c\u5373\u662f\u5149\u901f\u3002\u5f3a\u76f8\u4e92\u4f5c\u7528\u3001\u7535\u78c1\u4f5c\u7528\u3001\u5f31\u76f8\u4e92\u4f5c\u7528\u4f20\u64ad\u7684\u901f\u5ea6\u90fd\u662f\u5149\u901f\uff0c\u6839\u636e\u5e7f\u4e49\u76f8\u5bf9\u8bba\uff0c\u4e07\u6709\u5f15\u529b\u4f20\u64ad\u7684\u901f\u5ea6\u4e5f\u662f\u5149\u901f\uff0c\u4e14\u5df2\u4e8e2003\u5e74\u5f97\u4ee5\u8bc1\u5b9e\u3002\u6839\u636e\u7535\u78c1\u5b66\u7684\u5b9a\u5f8b\uff0c\u53d1\u653e\u7535\u78c1\u6ce2\u7684\u7269\u4ef6\u7684\u901f\u5ea6\u4e0d\u4f1a\u5f71\u54cd\u7535\u78c1\u6ce2\u7684\u901f\u5ea6\u3002\u7ed3\u5408\u76f8\u5bf9\u6027\u539f\u5219\uff0c\u89c2\u5bdf\u8005\u7684\u53c2\u8003\u5750\u6807\u548c\u53d1\u653e\u5149\u6ce2\u7684\u7269\u4ef6\u7684\u901f\u5ea6\u4e0d\u4f1a\u5f71\u54cd\u88ab\u6d4b\u91cf\u7684\u5149\u901f\uff0c\u4f46\u4f1a\u5f71\u54cd\u6ce2\u957f\u800c\u4ea7\u751f\u7ea2\u79fb\u3001\u84dd\u79fb\u3002\u8fd9\u662f\u72ed\u4e49\u76f8\u5bf9\u8bba\u7684\u57fa\u7840\u3002\u76f8\u5bf9\u8bba\u63a2\u8ba8\u7684\u662f\u5149\u901f\u800c\u4e0d\u662f\u5149\uff0c\u5c31\u7b97\u5149\u88ab\u7a0d\u5fae\u51cf\u6162\uff0c\u4e5f\u4e0d\u4f1a\u5f71\u54cd\u72ed\u4e49\u76f8\u5bf9\u8bba\u3002

\u5148\u901a\u8fc7\u516c\u5f0f\u8ba1\u7b97\u51fa\u67d0\u5730\u51c6\u786e\u7684\u65e5\u51fa\u65f6\u95f4\uff0c\u518d\u8bb0\u5f55\u4e0b\u5b9e\u9645\u770b\u5230\u65e5\u51fa\u7684\u65f6\u95f4\uff0c\u4e24\u4e2a\u65f6\u95f4\u76f8\u51cf\uff0c\u65e2\u662f\u9633\u5149\u901a\u8fc7\u592a\u9633\u5230\u5730\u7403\u8fd9\u6bb5\u8ddd\u79bb\u7684\u65f6\u95f4\uff0c\u518d\u7528\u592a\u9633\u5730\u7403\u4e4b\u95f4\u7684\u8ddd\u79bb\u9664\u4ee5\u8fd9\u4e2a\u65f6\u95f4\uff0c\u65e2\u5f97\u5230\u5149\u901f\u3002

光速的测量方法: 最早光速的准确数值是通过观测木星对其卫星的掩食测量的。还有转动齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。

1.罗默的卫星蚀法

光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(1644— 1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s.

2.布莱德雷的光行差法

1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:

C=299930千米/秒

这一数值与实际值比较接近.

以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现.

二、光速测定的大地测量方法

光速的测定包含着对光所通过的距离和所需时间的量度,由于光速很大,所以必须测量一个很长的距离和一个很短的时间,大地测量法就是围绕着如何准确测定距离和时间而设计的各种方法.

1.伽利略测定光速的方法

物理学发展史上,最早提出测量光速的是意大利物理学家伽利略.1607年在他的实验中,让相距甚远的两个观察者,各执一盏能遮闭的灯,如图所示:观察者A打开灯光,经过一定时间后,光到达观察者B,B立即打开自己的灯光,过了某一时间后,此信号回到A,于是A可以记下从他自己开灯的一瞬间,到信号从B返回到A的一瞬间所经过的时间间隔t.若两观察者的距离为S,则光的速度为

c=2s/t

因为光速很大,加之观察者还要有一定的反应时间,所以伽利略的尝试没有成功.如果用反射镜来代替B,那么情况有所改善,这样就可以避免观察者所引入的误差.这种测量原理长远地保留在后来的一切测定光速的实验方法之中.甚至在现代测定光速的实验中仍然采用.但在信号接收上和时间测量上,要采用可靠的方法.使用这些方法甚至能在不太长的距离上测定光速,并达到足够高的精确度.

2.旋转齿轮法

用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由 L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿 a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL.

在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为

在这一时间内,光所经过的光程为2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).

在对信号的发出和返回接收时刻能作自动记录的遮断法除旋转齿轮法外,在现代还采用克尔盒法.1941年安德孙用克尔盒法测得:c=299776±6km/s,1951年贝格斯格兰又用克尔盒法测得c=299793.1±0.3km/s.

3.旋转镜法

旋转镜法的主要特点是能对信号的传播时间作精确测量.1851年傅科成功地运用此法测定了光速.旋转镜法的原理早在1834年1838年就已为惠更斯和阿拉果提出过,它主要用一个高速均匀转动的镜面来代替齿轮装置.由于光源较强,而且聚焦得较好.因此能极其精密地测量很短的时间间隔.实验装置如图所示.从光源s所发出的光通过半镀银的镜面M1后,经过透镜L射在绕O轴旋转的平面反射镜M2上O轴与图面垂直.光从M2反射而会聚到凹面反射镜M3上, M3的曲率中心恰在O轴上,所以光线由M3对称地反射,并在s′点产生光源的像.当M2的转速足够快时,像S′的位置将改变到s〃,相对于可视M2为不转时的位置移动了△s的距离可以推导出光速值:

式中w为M2转动的角速度.l0为M2到M3的间距,l为透镜L到光源S的间距,△s为s的像移动的距离.因此直接测量w、l、l0、△s,便可求得光速.

在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.

另外,傅科还利用这个实验的基本原理,首次测出了光在介质(水)中的速度v<c,这是对波动说的有力证据.

3.旋转棱镜法

迈克耳逊把齿轮法和旋转镜法结合起来,创造了旋转棱镜法装置.因为齿轮法之所以不够准确,是由于不仅当齿的中央将光遮断时变暗,而且当齿的边缘遮断光时也是如此.因此不能精确地测定象消失的瞬时.旋转镜法也不够精确,因为在该法中象的位移△s太小,只有0.7毫米,不易测准.迈克耳逊的旋转镜法克服了这些缺点.他用一个正八面钢质棱镜代替了旋转镜法中的旋转平面镜,从而光路大大的增长,并利用精确地测定棱镜的转动速度代替测齿轮法中的齿轮转速测出光走完整个路程所需的时间,从而减少了测量误差.从1879年至1926年,迈克耳逊曾前后从事光速的测量工作近五十年,在这方面付出了极大的劳动. 1926年他的最后一个光速测定值为

c=299796km/s

这是当时最精确的测定值,很快成为当时光速的公认值.

三、光速测定的实验室方法

光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.

1.微波谐振腔法

1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.

2.激光测速法

1790年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.

四、光速测量方法一览表

除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.现将不同方法测定的光速值列为“光速测量一览表”供参考.

根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:

c=299792.458±0.001km/s

声速测量仪必须配上示波器和信号发生器才能完成测量声速的任务。实验中产生超声波的装置如图所示。它由压电陶瓷管或称超声压电换能器与变幅杆组成;当有交变电压加在压电陶瓷管上时,由于压电体的逆压电效应,使其产生机械振动。此压电陶瓷管粘接在铝合金制成的变幅杆上,经过电子线路的放大,即成为超声波发生器,由于压电陶瓷管的周期性振动,带动变幅杆也做周期轴向振动。当所加交变电压的频率与压电陶瓷的固有频率相同时,压电陶瓷的振幅最大,这使得变幅杆的振幅也最大。变幅杆的端面在空气中激发出纵波,即超声波。本仪器的压电陶瓷的振荡频率在40kHz以上,相应的超声波波长约为几毫米,由于他的波长短,定向发射性能好,本超声波发射器是比较理想的波源。由于变幅杆的端面直径一般在20mm左右,比此波长大很多,因此可以近似认为离开发射器一定距离处的声波是平面波。超声波的接受器则是利用压电体的正压电效应,将接收的机械振动,转化成电振动,为使此电振动增强。特加一选频放大器加以放大,再经屏蔽线输给示波器观测。接收器安装在可移动的机构上,这个机构包扩支架、丝杆、可移动底座(其上装有指针,并通过定位螺母套在丝杆上,有丝杆带动作平移)、带刻度的手轮等。接收器的位置由主、尺刻度手轮的位置决定。主尺位于底座上面;最小方尺位于底坐上面;最小分尺为1mm,手轮与丝杆相连上分为100分格,每转一周,接收器平移1mm,故手每一小格为0.01mm,可估到0.001mm。

用三棱镜放在阳光下,分解成七色后,用一个木板挡住红光和紫光,再用灵敏温度计分别放在他们的上方,可见灵敏温度计急剧升温,因为光还传热,可知有光,只是看不到,因贴近于红紫光 所以这样称
1.罗默的卫星蚀法 光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(1644—1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A和A’两点时)不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s.
2.布莱德雷的光行差法
1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:C=299930千米/秒
这一数值与实际值比较接近.
以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现.
二、光速测定的大地测量方法
光速的测定包含着对光所通过的距离和所需时间的量度,由于光速很大,所以必须测量一个很长的距离和一个很短的时间,大地测量法就是围绕着如何准确测定距离和时间而设计的各种方法.
1.伽利略测定光速的方法
物理学发展史上,最早提出测量光速的是意大利物理学家伽利略.1607年在他的实验中,让相距甚远的两个观察者,各执一盏能遮闭的灯,如图所示:观察者A打开灯光,经过一定时间后,光到达观察者B,B立即打开自己的灯光,过了某一时间后,此信号回到A,于是A可以记下从他自己开灯的一瞬间,到信号从B返回到A的一瞬间所经过的时间间隔t.若两观察者的距离为S,则光的速度为c=2s/t
因为光速很大,加之观察者还要有一定的反应时间,所以伽利略的尝试没有成功.如果用反射镜来代替B,那么情况有所改善,这样就可以避免观察者所引入的误差.这种测量原理长远地保留在后来的一切测定光速的实验方法之中.甚至在现代测定光速的实验中仍然采用.但在信号接收上和时间测量上,要采用可靠的方法.使用这些方法甚至能在不太长的距离上测定光速,并达到足够高的精确度.
2.旋转齿轮法
用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL.
在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为
在这一时间内,光所经过的光程为2×8633米,所以光速c=2×8633×18244=3.15×108(m/s).
在对信号的发出和返回接收时刻能作自动记录的遮断法除旋转齿轮法外,在现代还采用克尔盒法.1941年安德孙用克尔盒法测得:c=299776±6km/s,1951年贝格斯格兰又用克尔盒法测得c=299793.1±0.3km/s.
3.旋转镜法
旋转镜法的主要特点是能对信号的传播时间作精确测量.1851年傅科成功地运用此法测定了光速.旋转镜法的原理早在1834年1838年就已为惠更斯和阿拉果提出过,它主要用一个高速均匀转动的镜面来代替齿轮装置.由于光源较强,而且聚焦得较好.因此能极其精密地测量很短的时间间隔.实验装置如图所示.从光源s所发出的光通过半镀银的镜面M1后,经过透镜L射在绕O轴旋转的平面反射镜M2上O轴与图面垂直.光从M2反射而会聚到凹面反射镜M3上,M3的曲率中心恰在O轴上,所以光线由M3对称地反射,并在s′点产生光源的像.当M2的转速足够快时,像S′的位置将改变到s〃,相对于可视M2为不转时的位置移动了△s的距离可以推导出光速值。式中w为M2转动的角速度.l0为M2到M3的间距,l为透镜L到光源S的间距,△s为s的像移动的距离.因此直接测量w、l、l0、△s,便可求得光速。
在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
另外,傅科还利用这个实验的基本原理,首次测出了光在介质(水)中的速度v<c,这是对波动说的有力证据.
3.旋转棱镜法
迈克耳逊把齿轮法和旋转镜法结合起来,创造了旋转棱镜法装置.因为齿轮法之所以不够准确,是由于不仅当齿的中央将光遮断时变暗,而且当齿的边缘遮断光时也是如此.因此不能精确地测定象消失的瞬时.旋转镜法也不够精确,因为在该法中象的位移△s太小,只有0.7毫米,不易测准.迈克耳逊的旋转镜法克服了这些缺点.他用一个正八面钢质棱镜代替了旋转镜法中的旋转平面镜,从而光路大大的增长,并利用精确地测定棱镜的转动速度代替测齿轮法中的齿轮转速测出光走完整个路程所需的时间,从而减少了测量误差.从1879年至1926年,迈克耳逊曾前后从事光速的测量工作近五十年,在这方面付出了极大的劳动.1926年他的最后一个光速测定值为
c=299796km/s
这是当时最精确的测定值,很快成为当时光速的公认值.
三、光速测定的实验室方法(高中课本有)
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
1.微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
2.激光测速法(大学课本)
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=νλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达10-9,比以前已有最精密的实验方法提高精度约100倍.
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.
根据1975年第十五届国际计量大会的决议,现代真空中光速的最可靠值是:
c=299792.458±0.001km/s
接近光速时的速度合成
接近光速情况下,笛卡尔坐标系不再适用。同样测量光线离开自己的速度,一个快速追光的人与一个静止的人会测得相同的速度(光速)。这与日常生活中对速度的概念有异。两车以50km/h的速度迎面飞驰,司机会感觉对方的车以50 + 50 = 100km/h行驶,即与自己静止而对方以100km/h迎面驶来的情况无异。但当速度接近光速时,实验证明简单加法计算速度不再奏效。当两飞船以90%光速的速度(对第三者来说)迎面飞行时,船上的人不会感觉对方的飞船以90%c+90%c=180%c光速速度迎面飞来,而只是以稍低于99.5%的光速速度行驶。结果可从爱因斯坦计算速度的算式得出

物理中有这样一个公式 f= νλ
λ为波长ν为频率
测光的速度 可以测他的波长和频率 很复杂 原理大概是这样
将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2.404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达10-7.

精确的光速测定实验是麦克尔逊莫雷实验。这个实验的详细过程网上应该很容易查到的,这是一个相当著名的实验。

  • 鍏夌殑閫熷害鏄浣曟祴閲忕殑銆
    绛旓細鍏夐熺殑娴嬮噺鏂规硶锛 鏈鏃╁厜閫熺殑鍑嗙‘鏁板兼槸閫氳繃瑙傛祴鏈ㄦ槦瀵瑰叾鍗槦鐨勬帺椋熸祴閲忕殑銆傝繕鏈夎浆鍔榻胯疆娉銆佽浆闀滄硶銆佸厠灏旂洅娉曘佸彉棰戦棯鍏夋硶绛夊厜閫熸祴閲忔柟娉曘1锛庣綏榛樼殑鍗槦铓娉 鍏夐熺殑娴嬮噺锛棣栧厛鍦ㄥぉ鏂囧涓婅幏寰楁垚鍔锛岃繖鏄洜涓哄畤瀹欏箍闃旂殑绌洪棿鎻愪緵浜嗘祴閲忓厜閫熸墍闇瑕佺殑瓒冲澶х殑璺濈锛庢棭鍦1676骞翠腹楹﹀ぉ鏂囧瀹剁綏榛橈紙1644鈥 1710...
  • 鍏夐熸槸濡備綍娴嬪畾鍑烘潵鐨?
    绛旓細1銆佹渶鏃╃殑楂樼簿搴︽祴閲忓厜閫熺殑鏂规硶锛榻胯疆娉銆傚厜鍦ㄧ壒瀹氱殑鍏夎矾涓婏紝涓ゆ閫氳繃榻胯疆鐨勯棿闅欏悗琚娴嬭呯湅鍒般傝繖绉嶆儏鍐典笅锛屽彧鏈夐娇杞殑杞熸槸鏌愪竴浜涚壒瀹氱殑鍊肩殑鏃跺欙紝鍏夋墠鍙互椤哄埄閫氳繃涓や釜闂撮殭锛岃屼笉琚尅浣忋傝岃繖涓壒瀹氱殑杞燂紝鍒欎笌鍏夐熸湁鍏炽傝繖鏍凤紝灏辨妸鍏夐熺殑娴嬮噺锛岃浆鍖栨垚浜嗘祴閲忎竴涓娇杞殑杞熴2銆佽繄鍏嬪皵閫婄殑鏀硅繘瀹...
  • 鍏夐熸槸鎬庝箞娴嬪嚭鏉ョ殑?
    绛旓細鍏夐熸槸閫氳繃鏃嬭浆鍏潰妫遍暅娉曟祴鍑烘潵鐨銆傚厜閫熸祴閲忕殑闆嗗ぇ鎴愯呰繄鍏嬪皵閫婁粠1879骞村紑濮嬪氨鍦ㄤ粠浜嬪厜閫熺殑娴嬮噺鐮旂┒锛岀洿鑷1926骞达紝鎸佺画浜嗗ぇ绾50骞淬傝繄鍏嬪皵閫婄敤涓涓鍏潰閽㈠埗妫遍暅浠f浛浜嗘棆杞暅娉曚腑鐨勬棆杞钩闈㈤暅锛屼粠鑰屽欢闀夸簡鍏夌殑璺嚎锛涚敤绮剧‘娴嬪畾鐨勬1闀滆浆閫熶唬鏇夸簡榻胯疆娉涓殑榻胯疆杞燂紝浠庤屽噺灏忎簡鏃堕棿娴嬮噺鐨勮宸傚湪杩欎釜瀹為獙涓...
  • 鍏夐熸槸鎬庝箞娴嬪嚭鏉ョ殑
    绛旓細1849骞村痉鍥界墿鐞嗗瀹惰彶绱㈢敤鈥滈娇杞硶鈥濇祴鍑哄厜閫銆備粠鍏夋簮S鍙戝嚭鐨勫厜锛屽皠鍒板崐闀閾剁殑骞抽潰闀淎涓婏紝缁廇鍙嶅皠鍚庯紝浠庨娇杞甆鐨勯娇闂寸┖闅欏皠鍒板弽灏勯暅M涓婏紝鐒跺悗鍐嶅弽灏勫洖鏉ワ紝閫氳繃鍗婇晙閾堕暅灏勫叆瑙傚療鑰呯溂涓傚鏋滀娇榻胯疆杞姩锛岄偅涔堝湪鍏変粠榻块棿鍒拌揪M鍐嶅弽灏勫洖榻块棿鐨勬椂闂次攖鍐咃紝榻胯疆灏嗚浆杩囦竴涓搴︺傚鏋滆繖鏃堕娇a鍜宎鈥查棿鐨勭┖...
  • 鍏夌殑閫熷害鏄庝箞璁$畻鍑烘潵鐨?
    绛旓細鍏夋尝鏄數纾佹尝璋变腑鐨勪竴灏忛儴鍒嗭紝褰撲唬浜轰滑瀵圭數纾佹尝璋变腑鐨勬瘡涓绉嶇數纾佹尝閮借繘琛屼簡绮惧瘑鐨勬祴閲忋1950骞达紝鑹炬.鎻愬嚭浜嗙敤绌鸿厰鍏辨尟娉曟潵娴嬮噺鍏夐銆傝繖绉嶆柟娉曠殑鍘熺悊鏄紝寰尝閫氳繃绌鸿厰鏃跺綋瀹冪殑棰戠巼涓烘煇涓鍊兼椂鍙戠敓鍏辨尟銆傛牴鎹┖鑵旂殑闀垮害鍙互姹傚嚭鍏辨尟鑵旂殑娉㈤暱锛屽湪鎶婂叡鎸厰鐨勬尝闀挎崲绠楁垚鍏夊湪鐪熺┖涓殑娉㈤暱锛岀敱娉㈤暱鍜岄鐜囧彲璁$畻...
  • 鍏夐熸庝箞娴嬪嚭鏉ョ殑
    绛旓細鍏夐熺殑娴嬪畾鍖呭惈鐫瀵瑰厜鎵閫氳繃鐨勮窛绂诲拰鎵闇鏃堕棿鐨勯噺搴︼紝鐢变簬鍏夐熷緢澶э紝鎵浠ュ繀椤绘祴閲忎竴涓緢闀跨殑璺濈鍜屼竴涓緢鐭殑鏃堕棿锛屽ぇ鍦版祴閲忔硶灏辨槸鍥寸粫鐫濡備綍鍑嗙‘娴嬪畾璺濈鍜屾椂闂磋岃璁$殑鍚勭鏂规硶銆4銆佹棆杞榻胯疆娉 鐢ㄥ疄楠屾柟娉曟祴瀹氬厜閫熼鍏堟槸鍦1849骞寸敱鏂愮储瀹為獙锛屼粬鐢ㄥ畾鏈熼伄鏂厜绾跨殑鏂规硶锛堟棆杞娇杞硶锛夎繘琛岃嚜鍔ㄨ褰曘5銆佹棆杞...
  • 鍏夐熸槸鎬庝箞琚娴嬮噺鍑烘潵鐨?
    绛旓細鍏夐熸槸鎸囧厜娉㈡垨鐢电娉㈠湪鐪熺┖鎴栦粙璐ㄤ腑鐨勪紶鎾熷害銆傜湡绌轰腑鐨勫厜閫熸槸鐩墠鎵鍙戠幇鐨勮嚜鐒剁晫鐗╀綋杩愬姩鐨勬渶澶ч熷害銆傚畠涓庤娴嬭呯浉瀵逛簬鍏夋簮鐨勮繍鍔ㄩ熷害鏃犲叧锛屽嵆鐩稿浜庡厜婧愰潤姝㈠拰杩愬姩鐨勬儻鎬х郴涓娴嬪埌鐨勫厜閫熸槸鐩稿悓鐨勩傜墿浣撶殑璐ㄩ噺灏嗛殢鐫閫熷害鐨勫澶ц屽澶э紝褰撶墿浣撶殑閫熷害鎺ヨ繎鍏夐熸椂锛屽畠鐨勮川閲忓皢瓒嬩簬鏃犵┓澶э紝鎵浠ユ湁璐ㄩ噺鐨勭墿浣...
  • 鍏夐熸槸鎬庝箞绠鍑烘潵鐨?
    绛旓細鍏夐熺殑娴嬪畾鍖呭惈鐫瀵瑰厜鎵閫氳繃鐨勮窛绂诲拰鎵闇鏃堕棿鐨勯噺搴︼紝鐢变簬鍏夐熷緢澶э紝鎵浠ュ繀椤绘祴閲忎竴涓緢闀跨殑璺濈鍜屼竴涓緢鐭殑鏃堕棿锛屽ぇ鍦版祴閲忔硶灏辨槸鍥寸粫鐫濡備綍鍑嗙‘娴嬪畾璺濈鍜屾椂闂磋岃璁$殑鍚勭鏂规硶銆傜浉瀵逛簬鍏夋簮闈欐鍜岃繍鍔ㄧ殑鎯х郴涓娴嬪埌鐨勫厜閫熸槸鐩稿悓鐨勩傜墿浣撶殑璐ㄩ噺灏嗛殢鐫閫熷害鐨勫澶ц屽澶э紝褰撶墿浣撶殑閫熷害鎺ヨ繎鍏夐熸椂锛屽畠鐨...
  • 濡備綍娴嬪厜閫
    绛旓細鍏夐熺殑娴嬮噺骞朵笉涓瀹氳鐢ㄧ瀛︾殑浠櫒锛屽叾瀹炲湪鐢熸椿涓垜浠彲浠ュ埄鐢ㄨ韩杈圭殑涓滆タ杩涜娴嬮噺锛屾垜浠煡閬撶數纾佹尝鐨勪紶鎾熷害绛変簬鍏夐燂紝鍥犳鎴戜滑鍙互杩愮敤寰尝鐐夊彂鍑虹殑寰尝杩涜鍏夐熺殑娴嬮噺銆傚叿浣撳仛娉曞涓嬶細鎶婃棆杞墭鐩樹粠浣犵殑寰尝鐐変腑鎷鍑烘潵锛屽啀鎶婁竴鍧楀阀鍏嬪姏鏀惧湪鎵樼洏涓娿傜敤鏈澶х殑鍔熺巼鍔犵儹锛岀洿鍒板阀鍏嬪姏涓婃湁涓鍒涓夊鍑虹幇铻嶅寲鈥斺旇繖...
  • 浜虹被鏄庝箞娴嬮噺鍏夐熺殑
    绛旓細鍏夐熸祴閲鍙 浜虹被鍘嗗彶涓婇娆娴嬮噺鍏夐熸槸鍦1676骞淬傚綋鏃朵腹楹﹀ぉ鏂囧瀹跺ゥ鍕捖风綏榛橀氳繃鐮旂┒鏈ㄦ槦鐨勫崼鏄熸湪鍗竴鍙戠幇鍏夐熸槸鏈夐檺鐨勶紝骞朵笉鏄棤闄愮殑锛屽苟鐢辨浼拌鍑轰簡鍏夐熺殑鍊笺備粬浼扮畻鐨勮繃绋嬪涓嬪浘鎵绀猴細鍏朵腑鐨勫ぇ鐜槸鍦扮悆缁曞お闃崇殑杞ㄩ亾锛屽皬鐜槸鏈ㄥ崼涓缁曟湪鏄熺殑杞ㄩ亾銆傚綋鍦扮悆杩滅鏈ㄦ槦锛堜粠L鍒癒锛夊拰鎺ヨ繎鏈ㄦ槦锛堜粠F鍒癎锛夋椂锛...
  • 扩展阅读:光速一秒多少米 ... 光速一秒多少公里 ... 旋转齿轮测光速原理图 ... 声速是多少米每秒 ... 光速每秒多少km ... 比光速还快的三种东西 ... 1光年≈多少米 ... 光速的三种测量方法 ... 一光年飞机要飞多久 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网