芳香族化合物详细资料大全

芳香族化合物(aromatic compounds )是一类具有苯环结构的化合物,它们结构稳定,不易分解,且毒性很强,会对环境造成严重的污染,对人体危害极大。历史上曾将一类从植物胶中取得的具有芳香气味的物质称为芳香族化合物。芳香族化合物在高中阶段一般是指碳氢化合物分子中至少含有一个带离域键的苯环,但现代芳香族化合物存在不含有苯环的例子。芳香族化合物均具有“芳香性”。

基本介绍

简介,分类,性质,芳香性,取代反应,氧化反应,降解途径,单环芳香烃,多环芳烃,加氧酶,

简介

现代芳香族是指碳氢化合物分子中至少含有一个带离域键的苯环,具有与开链化合物或脂环烃不同的独特性质(称芳香性,aromaticity)的一类有化合物。如苯、萘、蒽、菲及其衍生物。苯是最简单、最典型的代表。它们容易发生亲电取代反应、对热比较稳定,主要来自石油和煤焦油。 有些分子中虽然不含苯环但也具有与苯相似的芳香性的化合物,称为非苯芳香化合物,如草盐、薁等。分子中含有苯环的有机化合物叫做芳香族化合物。它包括芳香烃及其衍生物,如卤代芳香烃、芳香族硝基化合物、芳香醇、芳香酸、类固醇等。 苯环 最初是指分子中含有苯环的化合物。19世纪中叶,化学工作者发现有相当多的有机化合物具有一些特别的性质,它们的分子式中氢原子与碳原子之比往往小于1,但是它们的化学性质却不像一般的不饱和化合物。例如它们不容易起加成反应而容易起取代反应,这些化合物中许多有芳香气味,有些是从香料中提取出来的,因此当时称它们为芳香族化合物。后来发现芳香族化合物是苯分子中一个或多个氢原子被其他原子或原子团取代而生成的衍生物。有些化合物可以看作是由苯通过两个或两个以上的碳原子并连起来的多环体系,它们也属于芳香族化合物,如萘和蒽等。20世纪30年代以后,芳香族化合物的含义又有了进一步的发展。有些化合物不含苯环,但具有芳香族化合物的某些性质,例如:酚酮、二茂铁等都能发生取代反应,这些化合物是非苯芳香族化合物。 其它的化合物可以根据休克尔规则来判断是否具有芳香性。具体表述是对完全共轭的、单环的、平面多双键物质来说,具有(4n+2)个离域π电子(这里n是大于或等于零的整数)的分子,可能具有特殊芳香稳定性。因而象吡啶等杂环物质都是具有芳香性的。它们的衍生物也都是芳香族化合物。

分类

一切具有芳香性苯环或杂环的碳氢化合物的总称。可分为两类:①苯烃或单苯芳烃,具有一个苯环的化合物及其衍生物。如苯、苯酚、卤代苯、甲苯等;②多环芳烃(polycyclic aromatic hydrocarbon,PAH),具有苯环或杂环共有环边的多环碳氢化合物。如萘、 蒽、 䓛、 苝、 苯并芘等。如其中由两个或两个以上的苯环与杂环以共有环边形成的多环化合物,称为苯稠杂环化合物,如吲哚、喹啉、芴等。炼焦、石油化工、染料、制药、农药、油漆等工业及化石燃料的燃烧排放物是环境中芳香烃主要的人为来源。自然界有些植物、细菌等也能产生这类化合物,如丁香酚、冬青油等。许多芳香烃都是环境中的有害物,尤其是多环芳烃的污染会引起致突变、致癌性,已引起全世界的重视。

性质

芳香性

(1)具有平面或接近平面的环状结构; (2)键长趋于平均化; (3)具有较高的C/H比值; (4)芳香化合物的芳环一般都难以氧化、加成,而易于发生亲电取代; (5)具有一些特殊的光谱特征,如芳环环外氢的化学位移处于核磁共振光谱图的低场,而环内氢处于高场。大多数芳香化合物都含有一个或多个芳环(或芳核)。芳香族化合物广泛分布于自然界,许多都是具有芳香气味。主要的工业来源是石油和煤焦油。

取代反应

是多数芳香化合物的重要反应之一,通过取代反应能从简单的芳香化合物合成较复杂的化合物。芳核上的取代反应从机制上讲包括亲电、亲核以及自由基取代三种类型,其中最常见的是亲电取代,例如:卤化、硝化、磺化、烷基化、酰基化等。芳香族化合物在有机合成工业上有重要的用途。

氧化反应

凡能使分子中增加氧或失去氢或使元素、离子失去电子的反应统称为氧化反应。 利用氧化反应可以将芳香族化合物转化成醛、酮、羧酸、醌、环氧化物和过氧化物等 ,这些产物均是有机合成的重要中间体和原料 ,其中许多已广泛用于医药、农药、染料、香料、各种助剂、工程塑胶和功能高分子的生产中。 稠环芳香族化合物由于具有富电子的结构 ,也容易发生氧化反应。 苯衍生物的氧化 对羟基苯甲醛是合成药物、香料和农药等的中间体。 它的传统制法是使对甲酚在均相条件下进行氧化,收率和选择性不太理想。文献报导 ,以负载在活性碳或分子筛上的 Co(OAc) 2 · 4H 2 O为主催化剂、Cu(OAc) 2 ·4H 2 O为助催化剂,用于对甲酚液相氧化,转化率 99.4%,选择性 99.0%,收率达到 98.4%。邻硝基苯甲酸是制取靛蓝和直接染料的重要原料,它的合成方法是使邻硝基甲苯进行氧化,有多种氧化方法,其中空气催化氧化法由于价廉、无催化剂后处理问题,成为目前最有吸引力的方法。3,4-二甲氧基苯甲酸具有抗真菌和阻止血小板凝聚的作用,是合成药物依托普瑞径的重要中间体,可以用香草醛 ( 4-羟基-3-甲氧基苯甲醛 )为原料经甲氧基化和氧化制成 ,文献报导的氧化剂有过氧乙酸、苯基三甲基三溴化铵和过硼酸钠等,但价格均较高。 萘及其衍生物的氧化 萘是最简单的稠环芳烃,萘及其同系物是煤焦油和石油裂化以及重整柴油中含量较高的组分。萘的氧化产物和含氧衍生物广泛用于生产增塑剂、醇酸树脂、合成纤维、染料、药物、各种化学助剂以及功能高分子材料的单体等。苯酐是萘的氧化产物,它与一元醇酯化生成的邻苯二甲酸二丁酯、二辛酯、二壬酯和壬基环己基酯等是聚氯乙烯塑胶的增塑剂;由苯酐与不饱和一元醇或饱和二元醇等缩聚物可合成醇酸树脂,用于生产油漆等,还可以合成多种染料,如直接染料、硫化染料和蒽醌染料等,重要的有耐晒翠蓝、萤光黄、海昌黄和硫化嫩黄等。 由萘氧化制苯酐,多采用多孔型气固相催化剂 V 2 O 5 ·K 2 SO 4 /SiO 2 。提高进料混合物中萘的含量可以提高苯酐的收率。 气相色谱分析表明,苯酐是通过 连续两步反应生成的。 用 1,2,3,4-四氢-1-萘甲酸或其甲酯与1,2-乙二胺合成的四氢咪唑衍生物是一种常用的抗交感神经作用药和解除鼻充血药。以2-萘甲酸为原料制造的2-丙基-2-萘甲酸酯及其类酯是高效杀虫剂。以2-萘甲酸及其锌盐作显色剂的热敏记录材料具有良好的抗增塑剂和溶剂性能,所形成的图象清晰且储藏时间长;以2-萘甲酸的衍生物、2-羟基-2-萘甲酸为原料合成的2-羟基-2-萘甲酰胺衍生物是一种优良的感光材料。萘胺经亚硝酸钠重氮化,置换成萘甲胺,用冰醋酸、水和浓硫酸混合物在 115~120℃的油浴中保温 15 h后,用等体积的水稀释产物、 抽滤、水洗至中性,再用 Na 2 CO 3 水溶液溶解滤饼、加热并趁热过滤,用过量稀硫酸溶液酸化,可得纯度为100%的 2-萘甲酸。 蒽的氧化 蒽醌的发现是染料化学工业发展史上的一个重要里程碑。蒽醌染料是数量最多、套用最广的染料,包括还原染料、活性染料、直接染料、酸性染料和分散染料等。蒽醌主要由蒽氧化制得。有关气固相催化氧化蒽制蒽醌的专利文献很多,都是以V 2 O 5 为主要活性组分,温度一般在 400℃左右。据报导,MnO 2 可促进蒽醌中间体氧化,若需轻度氧化,可选用粒状、粉状或电解产生的 MnO 2 作催化剂。在由蒽制蒽醌的非负载型催化剂 V 2 O 5 Fe 2 O 3 中掺杂硫酸盐,改变催化剂表面的酸中心,可提高反应选择性,掺杂K 2 SO 4 和CaSO 4 可使蒽醌的选择性从 57% 分别提高到89% 和 97%。在 AcOH和 Ac 2 O中、钒酸铵及稀土硝酸盐存在下,用 O 2 氧化蒽,蒽醌产率77.1% 除了蒽醌外,由蒽还可以制得均苯四甲酸,它是合成树脂的重要原料。 将蒽、 RuCl 3 、 NaClO 和NaOH在乙腈中混合,在 30℃下反应16 h,均苯四甲酸的收率可达 43%。最近,对蒽衍生物的氧化也进行了一些研究。 菲的氧化 氧化菲所得的 9,10-菲醌常用作预防谷物黑穗病、棉花苗期病的农药,也可作为制造染料中间体苯绕酮和纸浆防腐剂的原料。 深度氧化菲的产物— 联苯二甲酸是聚酯树脂、醇酸树脂及塑胶增塑剂的原料。 在 CH 2 Cl 2 介质中 ,用氟铬酸喹啉可以很容易地将菲氧化成为 9,10-二菲醌,在氧化过程中,有氧的转移。 Yatabe 等在少量Bu 3 SnCl存在下和二口恶烷-水溶液中,用 NaBrO 2 氧化菲 ,在室温下反应 24 h,可高收率地得到菲醌。 菲在 NOx存在下发生气相氧化反应,反应起始产生 OH自由基,然后引发氧化,产物有芴酮、2,2’-二甲酰联苯、1,4和 2,10-菲醌、 9,10-菲醌、二苯并吡喃酮及菲酮等。 菲在二羟基苯基苯磺酸硒存在下反应,在沸腾的二口恶烷水体系中主要生成菲醌,在甲醇中则生成 9 甲氧基菲。 在RuO 4 NaClO及季铵盐存在下,相转移催化氧化菲3~4 h,可生成 2,2-联苯三羧酸,产率大于85%,产物纯度大于 99% 。 Sarma等利用重铬酸喹啉氧化菲,从实验数据分析,速率决定步骤涉及H转移过程。 Trapido等研究了在水溶液中用O 3 氧化菲的反应。Murray 等研究了在(CH 3 ) 2 = CC(CH 3 ) 2 存在下菲与 O 3 的反应,产物为菲 9,10-二氧化物。 苊的氧化 氧化苊所得 1,8- 萘二甲酸酐是合成聚酯树脂、醇酸树脂和 BG灰色染料等的主要原料。苊经脱氢后生成苊烯 ,在 NBS存在和光照条件下该反应可以在室温下进行。苊烯经聚合生成的聚苊烯树脂可以代替酚醛树脂。Takeshita等用玫瑰红RB对苊烯敏化,生成顺式或反式 1,2 -二醇及其单醚衍生物。江致勤发现在 9,10-二氰蒽或 9-氰蒽敏化作用下,苊烯在乙腈中生成完全不同的单酮、双酮、酸酐及酸醛等含羰基产物,其中多聚苊烯的产物为 50% 。选用高活性的催化剂在温和条件下定向地在苊的 4,5 位上导入某些基团,再经氧化反应可以合成 1,4,5,8-萘四甲酸 ( 1,4,5,8-NTCA)。 1,4,5,8-NTCA是合成阴丹士林鲜艳橙GR等高级染料的中间体 ,由1,4,5,8-NTCA合成的染料色泽鲜艳、坚牢度高、耐热性好;由1,4,5,8-NTCA还可以合成高级聚酰亚胺树脂,该树脂耐高温、耐辐射 ,并具有优异的机械和电绝缘等性能,可作为宇航飞行器等用的特种材料;1,4,5,8-NTCA也是生产高性能纤维的重要原料。 芴的氧化 由芴的氧化产物芴酮可以制作抗癌剂及交感神经抑制剂,也可作为除草剂使用。 Marlin将芴、四氯化碳以及四丁基铵水合物混合,在 30 ℃下搅拌 15 min,得到二氯芴,收率达 97. 26% 。 用硫酸处理所得二氯芴,可定量地得到芴酮。 在V 2 O 5 Fe 2 O 3 存在下使芴氧化,掺杂 Cs 2 SO 4 能提高芴酮的选择性。Ando等用 KMnO 4 氧化芴,发现采用超音波辐射可使反应速率加快。Baur在二环己基生成芴酮和芴醇 ,其中芴酮的选择性达 98. 5% 。Bartlett 曾报导带有富电子基团的9甲氧基亚甲基芴在四氯化碳中可发生自由基光氧化。 江致勤研究了 9-亚苄基芴( BF)的光氧化反应,发现在光敏剂 9,10-二氰蒽的乙腈溶液中生成芴酮的反应进行得相当迅速 ,但在四氯化碳中进行得很缓慢,这与 Bartlett 的报导相反。

降解途径

单环芳香烃

苯的降解 苯的降解在 30 年前的研究已经非常成功 。苯降解时有二个分支途径,途径如图 1(a)。苯环最初被苯双加氧酶攻击而形成邻苯二酚,邻苯二酚进一步通过间位或邻位双加氧酶的作用而产生粘康酸半醛或粘康酸。 取代苯的降解 取代基团的存在使苯环的降解出现两种可能:先降解苯环或先降解侧链 。含 2 ~ 7 个碳原子的单烃基取代苯的一般途径如图 1(b) 。当 C >7 时,先通过 β,ω氧化降解取代烃基链,最后再降解苯环。长的烃基侧链氧化后足够给微生物提供生长的能量,这样微生物就不会降解苯环 。 联苯的降解 生物降解联苯途径如图 1(c),加氧联苯降解有两条途径:1,2 位加氧和 3, 4 位加氧,以前者居多,联苯经过两步双加氧酶作用后形成 2—经基—6 —酮基—6 —苯基 —2,3 —己二烯酸(HOPDA),再进一步被降解成苯甲酸(BA)。联苯和低度取代联苯还可以进行微生物降解, 降解的产物为单经基和二经基化合物。

多环芳烃

多环芳烃(Polycyclic Aromatic Hydrocarbons,PAH)是有机物不彻底燃烧产生的一类含有两个或两个以上融合芳香环的化合物 。微生物降解蔡的途径如图 1(d)。与其它芳香化合物的降解相同,第一步中双加氧菌进攻环形成 1,2 —经基蔡, 随后在第 1 和第 9 个碳原子间断裂 。

加氧酶

苯环化合物因其具有苯环结构而较难分解,若要在常温常压下将其分解,就必须依赖酶的参与。参与苯环化合物代谢的氧化酶可分为两类:一类为苯环羟基化加氧酶;另一类为苯环切割化加氧酶¨3'Hj。苯环羟基化加氧酶是通过氧分子及NADH或NADPH提供电子在苯环上加上两个羟基,如甲苯经过甲苯双加氧酶催化与氧分子形成顺
甲苯二氢二醇。苯环切割化加氧酶是由氧分子将苯环氧化并进行开环,如邻苯二酚在氧分子与酶的作用下,形成粘康酸或粘康酸半醛。最早的苯环羟基化加氧酶是由Gibson等从恶臭假单胞菌Fl中分离出来的,所有的酶都属于复合酶体系,并由2至3种蛋白质组成,但是在亚基的组成上却有相当大的差别。Batie等将其分为3大类:ClassI、ClassⅡ及ClassUl。Clam是由2种成分组成的,而ClasslI及ClassHI都是由3种成分组成的。苯环切割化加氧酶在进行开环反应时可分为两种形式:一种为在双氢氧基内切割,亦可称为邻位切割;另一种为在双氢氧基外切割,亦可称为间位切割。



  • 鑺抽鐑冨寘鎷湁鍝簺,瀹冪殑鎬ц川鏄?
    绛旓細鏁存暟),灏辨湁鑺抽鎬(褰 n>7 鏃,鏈変緥澶).鍏朵腑n鐩稿綋浜庣畝骞剁殑鎴愰敭杞ㄩ亾鍜岄潪閿建閬撶殑缁勬暟(濡傚浘).鑻湁鍏釜 蟺 鐢靛瓙,绗﹀悎 4n+2 瑙勫垯,鍏釜纰冲師瀛愬湪鍚屼竴骞抽潰鍐,鏁呰嫰鏈夎姵棣欐.鑰岀幆涓佷簩鐑,鐜緵鍥涚儻鐨 蟺 鐢靛瓙鏁颁笉绗﹀悎 4n+2 瑙勫垯,鏁呮棤鑺抽鎬с傛ц川锛 鑺抽鏃忓寲鍚堢墿鍦ㄥ巻鍙蹭笂鎸囩殑鏄竴绫讳粠妞嶇墿鑳堕噷...
  • 鑻佽姵棣欑儍銆鑺抽鏃忓寲鍚堢墿鏈変綍鍖哄埆?
    绛旓細涓夎呯殑鍖哄埆锛1銆佸畾涔変笉鍚岋細鑺抽鐑冿細鍚湁鑻幆鐨勭儍锛堢⒊姘㈠寲鍚堢墿锛夛紱鑺抽鏃忓寲鍚堢墿锛氬惈鏈夎嫰鐜殑鍖栧悎鐗╋紱鑻殑鍚岀郴鐗╋細鑻笂鐨勬阿鍘熷瓙琚兎鐑冨熀鍙栦唬鍚庣殑浜х墿锛屽畠鐨勭壒鐐规槸鍙惈鏈変竴涓嫰鐜笖鍙栦唬鍩轰竴瀹氭槸鐑峰熀鐨勭儍銆2銆佹ц川涓嶅悓锛氳姵棣欑儍锛氫笉婧朵簬姘达紝浣嗘憾浜庢湁鏈烘憾鍓傦紝濡備箼閱氥佸洓姘寲纰炽佺煶娌归啔绛夐潪鏋佹ф憾鍓傘備竴鑸...
  • 鑺抽鐑冨拰鑺抽鐑鍖栧悎鐗
    绛旓細鍦ㄥ厜鐓т笅鍒欏彂鐢熷姞鎴愬弽搴旂敓鎴愬叚姘寲鑻(C6H6Cl6)銆傝姵棣欑儍涓昏鐢ㄤ簬鍒惰嵂銆佹煋鏂欑瓑宸ヤ笟銆鑺抽鏃忓寲鍚堢墿鍦ㄥ巻鍙蹭笂鎸囩殑鏄竴绫讳粠妞嶇墿鑳堕噷鍙栧緱鐨勫叿鏈夎姵棣欐皵鍛崇殑鐗╄川,浣嗙洰鍓嶅凡鐭ョ殑鑺抽鏃忓寲鍚堢墿涓,澶у鏁版槸娌℃湁棣欏懗鐨.鍥犳,鑺抽杩欎釜璇嶅凡缁忓け鍘讳簡鍘熸湁鐨勬剰涔,鍙槸鐢变簬涔犳儻鑰屾部鐢ㄨ嚦浠.涓鏍风殑 ...
  • 鑺抽鐑冨拰鑺抽鍖栧悎鐗鏈変粈涔堝尯鍒
    绛旓細鏈川涓婃潵璇达紝鑺抽鐑冩槸鑺抽鍖栧悎鐗鐨勫瓙闆嗐璧勬枡鎵╁睍锛氳姵棣欑儍锛坅romatic hydrocarbons锛岀畝绉拌姵鐑冿級涓鸿嫰鍙婂叾琛嶇敓鐗╃殑鎬荤О锛屼箖鎸囧垎瀛愮粨鏋勪腑鍚湁涓涓垨鑰呭涓嫰鐜殑鐑冪被鍖栧悎鐗┿傚悕绉版潵婧愮敱浜庢湁鏈哄寲瀛﹀彂灞曞垵鏈燂紝杩欎竴绫诲寲鍚堢墿鍑犱箮閮藉湪鎸ュ彂鎬銆佹湁棣欏懗鐨勭墿璐ㄤ腑鍙戠幇锛屽叾浜叉牳鍙栦唬鏈虹悊濡傚浘锛氬弬鑰冭祫鏂欙細鑺抽鐑.鐧剧 ...
  • 浠涔堟槸鑺抽鐑鍖栧悎鐗鐨勬ц川鍜屽簲鐢?
    绛旓細鍥犳,鑺抽杩欎釜璇嶅凡缁忓け鍘讳簡鍘熸湁鐨勬剰涔,鍙槸鐢变簬涔犳儻鑰屾部鐢ㄨ嚦浠娿備笅闈粙缁嶄竴涓嬪悇绉鑺抽鏃忓寲鍚堢墿鐨勫寲瀛︽ц川鍙婂叾鍦ㄥ伐涓氥佸尰鑽瓑鏂归潰鐨勭敤閫斻 澶氱幆鑺抽鐑冪殑绠浠 鐑熺啅椋熷搧 澶氱幆鑺抽鐑,鍒嗗瓙涓惈鏈2涓垨2涓互涓婅嫰鐜粨鏋勭殑鍖栧悎鐗,鏄渶鏃╄璁よ瘑鐨勫寲瀛﹁嚧鐧岀墿銆傛棭鍦1775骞磋嫳鍥藉绉戝尰鐢烶ott灏辨彁鍑,鎵撴壂鐑熷洷鐨勭宸,鎴愬勾鍚庡鍙...
  • 楂樹腑鍖栧銆鑺抽鏃鎸囦粈涔?浠涔堟牱鐨勭墿璐ㄥ睘浜庤姵棣欐棌?
    绛旓細鑺抽鏃忓寲鍚堢墿锛坅romatic compounds 锛夊巻鍙蹭笂鏇惧皢涓绫讳粠妞嶇墿鑳朵腑鍙栧緱鐨勫叿鏈夎姵棣欐皵鍛崇殑鐗╄川绉颁负鑺抽鏃忓寲鍚堢墿銆備絾鏍规嵁姘斿懗鍒嗙被骞朵笉绉戝锛岀幇鍦ㄦ槸鎸囧垎瀛愪腑鑷冲皯鍚湁涓涓嫰鐜紝鍏锋湁涓庡紑閾惧寲鍚堢墿 鎴栬剛鐜儍涓嶅悓鐨勭嫭鐗规ц川(绉拌姵棣欐э紝aromaticity)鐨勪竴绫绘湁鏈哄寲鍚堢墿銆
  • 浠涔堝彨鑺抽鐑鍖栧悎鐗?
    绛旓細鑺抽鏃忓寲鍚堢墿鍦ㄥ巻鍙蹭笂鎸囩殑鏄竴绫讳粠妞嶇墿鑳堕噷鍙栧緱鐨勫叿鏈夎姵棣欐皵鍛崇殑鐗╄川,浣嗙洰鍓嶅凡鐭ョ殑鑺抽鏃忓寲鍚堢墿涓,澶у鏁版槸娌℃湁棣欏懗鐨.鍥犳,鑺抽杩欎釜璇嶅凡缁忓け鍘讳簡鍘熸湁鐨勬剰涔夛紝鍙槸鐢变簬涔犳儻鑰屾部鐢ㄨ嚦浠.鍒嗗瓙涓惈鏈変竴涓垨澶氫釜鑻幆鐨勭儍绫伙紝鍙姵棣欑儍锛涚畝绉拌姵鐑冦傛牴鎹畠浠殑缁撴瀯锛屽彲鍒嗕负涓夌被锛1銆佸崟鐜姵鐑冨垎瀛愪腑鍙惈涓涓...
  • 鑺抽鏃忓寲鍚堢墿瀹氫箟
    绛旓細璇ュ寲鍚堢墿鏄竴绫诲叿鏈夎嫰鐜粨鏋勭殑鍖栧悎鐗┿傚湪鍘嗗彶涓婏紝鏇惧皢涓绫讳粠妞嶇墿鑳朵腑鍙栧緱鐨勫叿鏈夎姵棣欐皵鍛崇殑鐗╄川绉颁负鑺抽鏃忓寲鍚堢墿銆傜幇浠h姵棣欐棌鍖栧悎鐗╁垯鏄寚纰虫阿鍖栧悎鐗╁垎瀛愪腑鑷冲皯鍚湁涓涓甫绂诲煙閿殑鑻幆锛屽叿鏈変笌寮閾惧寲鍚堢墿鎴栬剛鐜儍涓嶅悓鐨勭嫭鐗规ц川锛堢О鑺抽鎬э紝aromaticity锛夌殑涓绫绘湁鏈哄寲鍚堢墿銆傝繖浜涘寲鍚堢墿涓澶氭湁鑺抽姘斿懗锛...
  • 鑺抽鏃忓寲鍚堢墿瀹氫箟
    绛旓細鑺抽鏃忓寲鍚堢墿鏄竴绫诲叿鏈夎嫰鐜粨鏋勭殑鍖栧悎鐗┿傝姵棣欐棌鍖栧悎鐗╃粨鏋勭ǔ瀹氾紝涓嶆槗鍒嗚В锛屼細瀵圭幆澧冮犳垚涓ラ噸鐨勬薄鏌撱傚巻鍙蹭笂鏇惧皢涓绫讳粠妞嶇墿鑳朵腑鍙栧緱鐨勫叿鏈夎姵棣欐皵鍛崇殑鐗╄川绉颁负鑺抽鏃忓寲鍚堢墿銆傝姵棣欐棌鍖栧悎鐗╂槸鎸囧垎瀛愪腑鑷冲皯鍚湁涓涓鍩熼敭鐨勭幆鐘跺寲鍚堢墿銆
  • 鑺抽鏃娣峰悎鐗╂槸浠涔
    绛旓細鑺抽鏃忔贩鍚堢墿鏄绉鑺抽鏃忓寲鍚堢墿鐨勬贩鍚堢墿 鑺抽鏃忓寲鍚堢墿:鍚湁鑻幆鐨勬湁鏈哄寲鍚堢墿銆備緥濡:鑻佺敳鑻佷箼鑻佺鍩鸿嫰銆佹隘鑻佽仈鑻佽悩绛
  • 扩展阅读:如何判断化合物有芳香 ... 4n+2规则怎么判断 ... 芳香族化合物举例 ... 芳香烃和芳香族化合物 ... 邓超的母亲是谁 ... 杨颖详细资料 ... 芳香族化合物怎么判断 ... 芳香族化合物有氮吗 ... 李白资料大全详细 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网