谁有植物生长素的影响资料?

\u5173\u4e8e\u690d\u7269\u751f\u957f\u7d20\u7684\u5f71\u54cd

\u80cc\u5149\u4e00\u4fa7\u7684\u751f\u957f\u7d20\u5206\u5e03\u5f97\u591a,\u4fc3\u8fdb\u830e\u7684\u751f\u957f\u3002

\u4e00\u822c\u6765\u8bf4\uff0c\u4ea7\u751f\u751f\u957f\u7d20\u7684\u90e8\u4f4d\u751f\u957f\u7d20\u5206\u5e03\u5f97\u5c11\u4e00\u4e9b\uff0c\u56e0\u4e3a\u6709\u6781\u6027\u8fd0\u8f93\u3002


一、生长素的发现历史
生长素(AuXIns)是发现最早、研究最多、在植物体内存在最普遍的一种植物激素。早在1880年达尔文(CHArles DArWIn)父子进行向光性实验时,首次发现植物幼苗尖端的胚芽鞘在单方向的光照下向光弯曲生长,但如果把尖端切除或用黑罩遮住光线,即使单向照光,幼苗也不会向光弯曲(图6-1)。他们当时因此而推测:当胚芽鞘受到单侧光照射时,在顶端可能产生一种物质传递到下部,引起苗的向光性弯曲。后来,在达尔文试验的启示下,很多学者都相继进行了这方面的研究,并证实了这种物质的存在。其中最成功的是荷兰人温特(F�W�WenT),他在1928年首次成功地将生长素收集在琼脂小块中,证明这种物质同植物的向光性弯曲生长相关(图6-2)。他建立的生长素生物鉴定法——燕麦试验法,至今仍被应用。直到1946年,才从高等植物中首次分离,提取出与生长有关的活性物质,经过鉴定它是一种结构较简单的有机化合物——吲哚乙酸(Indole ACeTIC ACId,简称IAA),其分子式为C10H9O2N,分子量为175.19。

二、生长素在植物体内的分布与运输
植物体内生长素的含量虽然微少,但分布甚广,植物的根、茎、叶、花、果实、种子及胚芽鞘中均有。但主要集中在胚芽鞘、幼嫩的茎尖、根尖、叶片和未成熟的种子及禾谷类的居间分生组织等生长旺盛的部位,生长缓慢或趋于衰老的组织中图6-3黄化的燕麦幼苗中生长素的分布较少。生长素在胚芽鞘的尖端和根尖中含量最多,一般距顶端越远,含量越少,而根尖中的含量普遍低于胚芽鞘尖端(图6-3)。
生长素主要是在植物茎尖的营养芽和幼嫩的叶片中合成,然后运输到作用部位。生长素在植物体内的传导具有典型的极性运输(PolAr TrAnsPorT)特性,即生长素只能从植物体形态学的上端向下端运输,而不能倒转过来运输。以茎尖和胚芽鞘的极性运输最为明显,这可通过实验证明。把含有生长素的琼脂块放在一段胚芽鞘的形态学上端,把另一块不含生长素的琼脂块放在胚芽鞘的形态学下端,经过一段时间,下端的琼脂块中就含有生长素。但若把这一段芽鞘倒过来,其形态学的上端朝下,而下端朝上,作同样的试验,生长素则不能向上运输(图6-4)。

三、生长素的生物合成、分解及其在植物体内的存在状态
(一)生长素的生物合成
色氨酸是植物体内生长素生物合成重要的前体物质,其结构与IAA相似,在高等植物中普遍存在。通过色氨酸合成生长素有两条途径:(1)色氨酸首先氧化脱氨形成吲哚丙酮,再脱羧形成吲哚乙醛;(2)色氨酸先脱羧形成色胺,然后再由色胺氧化脱氨形成吲哚乙酸。吲哚乙醛在相应酶的催化下最终氧化为吲哚乙酸。可见,吲哚乙醛是两种途径的共同中间产物(图6-5)。至于生长素的生物合成究竟走哪条途径,因植物的种类及器官不同而异,大多数研究者认为,第一条途径是高等植物体内生长素生物合成的主要途径。此外在十字花科植物中存在较多的吲哚乙腈,在酶的作用下也可转变成为吲哚乙酸。这些合成生长素的途径的存在,可以保证不同的植物类型以及植物在不同的生育期、不同的环境下维持体内生长素的正常水平。
(二)生长素的分解
生长素和其他物质一样,在植物体内不断合成也不断分解,植株体内天然生长素的含量,实际上是合成反应与降解反应两者动态平衡的结果。生长素的分解有两条途径,即酶氧化与光氧化。广泛存在于植物体内的吲哚乙酸氧化酶和某些过氧化物酶能够将吲哚乙酸氧化分解,酶氧化是IAA的主要降解过程。
IAA氧化酶是含铁的血红蛋白,它需要两个辅助因子,即Mn2+和酚。IAA氧化酶的活性为一些一元酚(如2,4-二氯苯酚、阿魏酸等)加速,受一些二元酚(如:绿原酸、儿茶酚等)的抑制。酚类物质很可能是IAA降解的调节剂。IAA氧化酶的活性与植物器官的生长速率有负相关关系。衰老器官中IAA氧化酶活性比幼嫩器官中高得多,距根尖或茎尖越远,IAA氧化酶活性越高。矮生植物体内IAA氧化酶活性比正常植物高,因此,矮生植物体内的生长素含量减少,从而限制了茎和根的伸长生长,表现出矮生特性。在实践中,常常可通过对胚芽鞘或某些器官中IAA氧化酶、过氧化物酶活性的分析测定,早期预测植物的高度。
(三)生长素在植物体内的存在状态
植物组织中的生长素有两种不同的存在状态:一种是自由型(游离态)生长素,易于提取,具有生理活性;另一种是束缚型(结合态)生长素,即一部分的吲哚乙酸与其他物质结合形成复合物而暂时失去生理活性(又称之为钝化)。如吲哚乙酸与葡萄糖结合为吲哚乙酸葡萄糖甙(葡萄糖甙),与蛋白质结合为吲哚乙酸——蛋白质复合物等,这类生长素常可占植物体中吲哚乙酸总量的50%~90%,它们可能是植物解除过量吲哚乙酸毒性或避免吲哚乙酸(IAA)氧化酶破坏的一种运输及贮藏形式。结合态生长素在种子等贮藏器官中较多,在适当的条件下,它们又能被分解、转化为具有活性的游离生长素而调节生长。如种子胚乳中存在的结合生长素是幼苗生长所需IAA的主要来源,当干种子吸水萌动时,其结合态生长素转化为活性很强的游离态生长素而促进幼苗生长。

四、生长素的生理效应
(一)对植物生长的影响
生长素能促进细胞的纵向伸长,从而对植物或营养器官的伸长生长表现出明显的促进作用,这是其基本的生理效应。
生长素对植物生长的影响随浓度、物种和器官种类及细胞年龄而异,并具有显著的正、负双重效应。在一定条件下它既能促进生长,又能抑制生长;既能促进发芽,又能抑制发芽;既能保花,保果,也能疏花疏果。一般较低浓度促进生长,高浓度则抑制生长,浓度再高甚至会杀死植物。
不同器官对外加生长素不同浓度的反应有很大差异。以根、茎、芽三种不同器官为例,三者的最适浓度为茎>芽>根。根对生长素最敏感,极低浓度即可促进生长(10-10Mol/L左右),在较高浓度下生长受抑制;茎对生长素的敏感程度较差,其促进生长的最适浓度约为10-5Mol/L,达10-3Mol/L以上茎生长才受抑制;芽的反应则介于茎与根之间。因此,促进茎生长的浓度足以抑制根的生长(图6-6)。
(二)促进细胞分裂与分化
生长素除对伸长生长具有明显的促进效应外,对细胞分裂与分化及形态建成也有一定的作用。如用一定浓度的生长素处理一些植物枝条切段基部,则可刺激该部位的细胞分裂,诱导根原基的发生,促进生根,这是其他激素所不能代替的。因此,常常又将生长素称之为“成根激素”。此外,生长素还能引起顶端优势,促进某些植物开花,控制性别分化,促进单性结实产生无籽果实,诱导植物的向性生长等,这些将在本书有关章节中详述。

五、生长素的作用机理
(一)植物激素的受体
当任何一种植物激素作用于植物时,必须首先和细胞内的某些物质结合成复合物,才能产生有效的调节作用。细胞内这种能与植物激素进行特异结合的物质称为激素受体。激素受体分子同相应的植物激素结合并直接相互作用,识别激素的信号,由此触发了植物体内的一系列生理生化反应,最终导致形态上的变化,从而表现出不同的生物学效应。因此,植物激素与其受体的结合是参与生理生化代谢反应的第一步。
激素+受体→激素—受体→生理生化反应→形态变化
(二)生长素的作用方式
细胞的纵向伸长即意味着细胞体积的扩大,而细胞体积的扩大依赖于原生质和其他细胞内含物的增加。但由于植物细胞的最外部被一层半硬性的细胞壁所包围,细胞体积若要增大,细胞壁也必须相应扩大。细胞壁的扩大是通过增加其可塑性(PlAsTIsITy)来实现的。所谓可塑性,是指细胞壁的不可逆的伸展能力,它与弹性不同,弹性是指可逆的伸展能力。试验证明,用生长素处理可以使细胞壁的结构松弛、软化,因而增加了它的可塑性。而且在不同浓度的生长素影响下,其可塑性变化和生长的增加幅度接近,这说明生长素所诱导的生长是通过细胞壁可塑性的增加而实现的(图6-7)。生长素促进细胞壁可塑性增加,并非单纯的物理变化,而是代谢活动的结果,因为,生长素对死细胞的可塑性变化无效;缺氧或呼吸抑制剂存在的条件下,可以抑制生长素诱导细胞壁可塑性的变化。
对于生长素影响细胞壁的可塑性并导致细胞伸长生长的作用方式,目前主要存在以下两种假说:
1.酸—生长学说(ACIdgroWTH THeory) 由于细胞膜上存在质子泵(可能是ATP酶),在生长素的作用下,生长素与质子泵结合而使之活化,质子泵便将质子(H+)从细胞质中不断地泵到细胞壁,使细胞壁环境酸化。一方面减弱了胞壁的主要结构成分纤维素分子间氢键的结合力,另一方面也促进了一些适宜于酸性环境的水解酶活性增强(如纤维素酶等),导致细胞壁纤维素结构间交织点破裂,连接松弛,细胞壁可塑性增大,压力势降低,细胞水势下降,原生质的粘度降低,透性增高,促进了更多的水分和营养物质进入细胞内,从而使细胞体积扩大,达到伸长生长的目的(图6-8)。由于生长素和其他酸性溶液都可同样促进细胞的伸长(图6-9),而且生长素促进H+分泌的速度和细胞伸长速率是一致的,所以,把生长素能诱导细胞壁酸化并使其可塑性增大而导致细胞伸长的理论称为酸—生长学说。
2.基因活化学说(gene ACTIVATIon THeory) 生长素诱导细胞的持续生长不仅要依赖于细胞壁可塑性的增大,而且在细胞扩大时还要增加新的细胞壁成分如纤维素等(因为细胞伸长时胞壁并不变薄)。同时,细胞壁组成成分之间还需要重新相互连接,蛋白质等细胞内含物也需要不断地合成,这都需要形成有关的酶(蛋白质)。
20世纪60年代以来的许多试验表明,生长素促进生长是与其增强核酸和蛋白质的生物合成密切相关的。因为当蛋白质合成的专一抑制剂环己亚胺(CyCloHeXIMIde)和核酸合成的专一抑制剂放线菌素D(ACTInoMyCIn D)存在时,也能抑制生长素对生长的诱导作用,而且核酸和蛋白质合成被抑制量,恰好相当于这两种抑制剂降低生长素对生长诱导的量,这两者间呈平行关系(图6-10),说明生长素促进生长也依赖于核酸和蛋白质的合成。这些发现,把对生长素作用机理的认识提高到了分子水平。

六、人工合成的生长素类及其应用
(一)人工合成的生长素类
科技工作者在对吲哚乙酸化学结构和生理活性相互关系进行深入研究的基础上,又人工合成了一批与生长素的化学结构及生理效应相类似的有机化合物,将它们统称为人工合成生长素。常用的人工合成的生长素类药剂,按其化学结构,大致可分为三大类:
1.吲哚衍生物类 如吲哚丙酸(IPA)、吲哚丁酸(IBA)。
2.萘酸类 如α-萘乙酸(NAA)、萘乙酸钠、萘乙酸酰胺(DAN)等,其中萘乙酸生产容易,价格低廉,活性强,是使用最广泛的植物生长调节剂。
3.苯氧酸类 主要有2,4-二氯苯氧乙酸(2,4-D)、2,4,5-三氯苯氧乙酸(2,4,5-T)、4-碘苯氧乙酸(4-CPA、增产灵)等,其中以2,4-D和2,4,5-T的活性较强。
(二)人工合成生长素的应用
1.促进插枝生根生长实践早已证明,如果在插枝上适当保留一些芽或幼叶,就能促进插枝生根,这是因为芽和叶中产生的生长素,通过极性运输并积累在插枝基部,使之得到足够的生长从而恢复细胞分裂机能并诱导生根。因此,在插条基部外施生长素,能使一些不易生根的植物插条迅速生根,提高成活率。例如,葡萄插枝在300Mg/L的NAA溶液中快速浸沾1Min;桃树绿枝基部在750~1500Mg/L的NAA溶液中浸沾5~10s;猕猴桃插枝用5000Mg/L的IBA溶液浸沾5~10s;小叶黄杨插枝用5000Mg/L的IBA粉剂处理;均能显著地促进插条生根。目前常用的促进生根药剂主要是IBA和NAA�IBA的效应强,维持时间长,诱发的不定根多而长,但价格较贵;NAA价廉,促进生根较少但粗壮�因此,二者混用效果最佳。
2.防止器官脱落生长素含量多的器官或组织能够吸引更多的营养物质向此转移,抑制离层的形成,防止因营养失调或其他原因引起的器官脱落。生产上用10~50Mg/L NAA或1Mg/L的2,4-D喷洒植株或树冠,可以防止花、果和蕾铃的脱落,对番茄、棉花、苹果和柑桔等都有效。
3.引起单性结实、形成无籽果实用生长素处理未授粉的雌蕊柱头,子房就能发育成无籽果实,这种不经授粉而子房直接发育成果实的现象称为单性结实。用10~15Mg/L的2,4-D溶液蘸花或喷花簇,既可促进产果,还可引起单性结实,形成无籽瓜果,提高果实品质。对茄子、草莓、番茄、西瓜、葡萄等处理都有同样效果。
4.疏花疏果应用5~20Mg/L的萘乙酸、25~50Mg/L的萘乙酰胺喷施苹果树冠;40Mg/L的萘乙酸钠喷雪花梨,能有效地疏除部分花、果,省工、经济,并能克服果树大小年现象。

植物的生长素在适合的浓度下,能促进(果实的发育).扦插的枝条生根(防止落花)和(落果),但浓度过高,植物生长素却会(抑制植物生长)

  • 妞嶇墿鐢熼暱绱鏄皝鍙戠幇骞跺懡鍚鐨?
    绛旓細妞嶇墿鐢熼暱绱犳槸鐢辫揪灏旀枃鍙戠幇锛屾俯鐗瑰懡鍚嶇殑銆1880骞达紝杈惧皵鏂囬氳繃瀹為獙鎺ㄦ兂锛岃儦鑺介灅鐨勫皷绔彲鑳戒細浜х敓鏌愮鐗╄川锛岃繖绉嶇墿璐ㄥ湪鍗曚晶鍏夌殑鐓у皠涓嬶紝瀵硅儦鑺介灅涓嬮潰鐨勯儴鍒嗕細浜х敓鏌愮褰卞搷銆備箣鍚庣殑妞嶇墿鐢熺悊瀛﹀浠氳繃涓绯诲垪鐨勫疄楠岋紝閫愭鎻ず浜嗚繖绉嶇墿璐ㄧ殑瀛樺湪鍜屼綔鐢ㄦ満鍒躲備腹楹︽鐗╃敓鐞嗗瀹惰┕妫湪1910骞撮氳繃瀹為獙璇佹槑锛岃儦鑺介灅椤跺皷浜х敓...
  • 鐢熼暱绱瀵妞嶇墿鐢熼暱鐨勫奖鍝
    绛旓細7. 鐢熼暱绱犵殑娴撳害瀵圭敓鏍鐨勫奖鍝鏄弻鍚戠殑锛屼綆娴撳害淇冭繘鏍圭殑褰㈡垚锛岄珮娴撳害鎶戝埗鏍圭殑鐢熼暱銆8. 鍥犳锛屽湪妞嶇墿缁勭粐鍩瑰吇涓紝闇瑕佹牴鎹叿浣撶殑妞嶇墿绉嶇被鍜屽煿鍏绘潯浠舵潵纭畾閫傚綋鐨勭敓闀跨礌娴撳害銆9. 鐢熼暱绱犵殑搴旂敤鏂瑰紡涔熶細褰卞搷鐢熸牴鏁堟灉锛屽父瑙佺殑鏂瑰紡鍖呮嫭澶栨簮鍠锋柦鍜屽唴婧愬鐞嗐10. 澶栨簮鍠锋柦鏄寚灏嗙敓闀跨礌婧舵恫鍠锋磼鍦ㄦ鐗╃殑鑼庛佸彾鎴...
  • 妞嶇墿鐢熼暱绱瀵逛汉鐨勫奖鍝
    绛旓細妞嶇墿鐢熼暱绱犳槸妞嶇墿鐢熼暱鍙戣偛鐨勫叧閿縺绱狅紝瀹冨浜虹被鏈韩鏄棤瀹崇殑銆傚湪鍐滀笟瀹炶返涓紝浜虹被浼氬埄鐢ㄧ壒瀹氱殑妞嶇墿鐢熼暱绱犵被浼肩墿鏉ヤ績杩涙鐗╃敓闀匡紝渚嬪淇冭繘鎻掓潯鐢熸牴鎴栧鍔犳灉瀹炲ぇ灏忋傝繖浜涘簲鐢ㄦ棬鍦ㄦ彁楂樺啘浣滅墿鐨勪骇閲忓拰璐ㄩ噺锛屼粠鑰屾弧瓒充汉绫荤殑椋熺墿闇姹傘
  • 鐢熼暱绱瀵妞嶇墿鐢熼暱鐨浣滅敤
    绛旓細鍦ㄨ緝浣庢祿搴︿笅锛岀敓闀跨礌鑳戒績杩妞嶇墿鐢熼暱锛涜屽湪楂樻祿搴︿笅锛岀敓闀跨礌鍒欎細鎶戝埗妞嶇墿鐢熼暱锛岀敋鑷冲彲鑳藉鑷存鐗╂浜°傝繖涓鐗规ц〃鐜板湪鐢熼暱绱犲涓嶅悓妞嶇墿鍣ㄥ畼鐨勫奖鍝涓婏紝渚嬪鏍广佽娊鍜岃寧銆備笉鍚屽櫒瀹樺鐢熼暱绱犵殑鏁忔劅绋嬪害涓嶅悓锛屾牴鏈涓烘晱鎰燂紝鍏舵鏄娊锛岃寧鏈涓嶆晱鎰熴傜敓闀跨礌鐨勪袱閲嶆у湪鐢熶骇瀹炶返涓篃鏈夋墍搴旂敤锛屼緥濡傞《绔紭鍔跨幇璞″拰...
  • 鐢熼暱绱鍐滀笟杩愮敤
    绛旓細鐢熼暱绱锛屽嵆IAA锛屽妞嶇墿鍣ㄥ畼鐨勭敓闀挎湁鏄捐憲褰卞搷銆傞鍏堬紝瀹冨湪淇冭繘钀ュ吇鍣ㄥ畼锛屽鑺姐佽寧鍜屾牴鐨勭旱鍚戠敓闀夸腑璧峰叧閿綔鐢ㄣ傚綋IAA娴撳害澧炲姞鏃讹紝鍣ㄥ畼鐨勪几闀块愭笎澧炲己锛岀洿鍒拌揪鍒版渶閫傛祿搴︼紝姝ゆ椂鍣ㄥ畼鐢熼暱杈惧埌鏈澶с傜劧鑰岋紝瓒呰繃鏈閫傛祿搴︼紝鐢熼暱绱犱細鎶戝埗鍣ㄥ畼鐨勪几闀裤傚叿浣撴潵璇达紝鏍瑰IAA鐨勬晱鎰熷害鏈楂橈紝鏋佷綆娴撳害鍗冲彲淇冭繘鐢熼暱锛屾渶閫...
  • 鐢熼暱绱瀵妞嶇墿鐢熸牴鐨勫奖鍝
    绛旓細鐢熸牴鏄寚妞嶇墿浠庤寧銆佸彾銆佽娊绛夐潪鏍归儴浣嶅彂鍑烘柊鐨勬牴绯汇傞氳繃缁勭粐鍩瑰吇锛屽彲浠ュ埄鐢ㄧ敓闀跨礌鏉ヤ績杩涙鐗╃殑鐢熸牴銆備竴鑸潵璇达紝鐢熼暱绱犵殑娴撳害鍜屽簲鐢ㄦ柟寮忎細瀵圭敓鏍规晥鏋滀骇鐢熷奖鍝嶃傜敓闀跨礌鐨勬祿搴﹀鐢熸牴鐨勫奖鍝鏄弻鍚戠殑銆備綆娴撳害鐨勭敓闀跨礌鍙互淇冭繘鏍圭殑褰㈡垚锛岃岄珮娴撳害鐨勭敓闀跨礌鍒欎細鎶戝埗鏍圭殑鐢熼暱銆傚洜姝わ紝鍦ㄦ鐗╃粍缁囧煿鍏讳腑锛岄渶瑕佹牴鎹...
  • 鐢熼暱绱濡備綍淇冭繘妞嶇墿鐢熼暱
    绛旓細鐢熼暱绱犲妞嶇墿鐢熼暱鐨勪績杩涗綔鐢ㄦ渶涓烘樉钁楋紝鍏褰卞搷鍥犳祿搴﹁屽紓锛屽鑼庛佽娊銆佹牴鐨勪績杩涙晥鏋滀緷娆″噺寮憋紝鏈浣虫祿搴﹀垎鍒害涓烘瘡鍗10^-5鎽╁皵銆10^-8鎽╁皵銆10^-10鎽╁皵銆鐢熼暱绱犵殑杩愯緭鍏锋湁鏄庢樉鐨勬瀬鎬э紝涓昏浠庢鐗╃殑涓婇儴鍚戜笅閮ㄨ繘琛屻傝繖涓鐗规т笌鐢熼暱绱犲湪妞嶇墿浣撳唴瀵艰嚧鐨勯《绔紭鍔跨幇璞″瘑鍒囩浉鍏筹紝鍗抽《绔粍缁囦骇鐢熺殑鐢熼暱绱犳姂鍒朵晶鑺...
  • 妞嶇墿鐢熼暱绱
    绛旓細妞嶇墿鐢熼暱绱璁や负婵绱犱富瑕佹槸浣滅敤鍦ㄤ簡鏍搁吀浠h阿锛屽彲鑳藉睘浜嶥NA杞綍姘村钩涓娿傝繖绉嶆鐗╃敓闀跨礌鍏锋湁浜嗗緢澶氱殑鍩哄洜娲诲寲锛屽舰鎴愪簡涓绉嶆柊鐨刴RNA銆佹柊鐨勮泲鐧借川锛屽綋鐒跺叾涓寘鍚殑涓昏杩樻槸閰讹紝杩欑妞嶇墿鐢熼暱绱犺兘澶熷奖鍝嶇粏鑳炲唴鐨勬柊闄堜唬璋紝寮曡捣鐢熼暱鍙戣偛鐨勫彉鍖栥傚垯璁や负婵绱犱綔鐢ㄤ簬缁嗚優鑶滐紝鍗宠川鑶滈鍏堝彈婵绱鐨勫奖鍝锛屽彂鐢熶竴绯诲垪鑶滅粨鏋勪笌...
  • 鐢熼暱绱鐮旂┒鍘嗗彶
    绛旓細1933骞达紝F.鍏嬫牸灏旇繘涓姝ョ獊鐮达紝浠栧湪浜哄翱鍜岄叺姣嶄腑鍒嗙鍑轰竴绉嶅悕涓鍚插摎涔欓吀鐨鍖栧悎鐗╋紝瀹冨湪鐕曢害璇曟硶涓〃鐜板嚭涓庣敓闀跨礌鐩稿悓鐨勬晥搴斻傞殢鍚庣殑瀹為獙璇佸疄锛屽惒鍝氫箼閰稿氨鏄敓闀跨礌锛屽畠骞挎硾瀛樺湪浜庡悇绉嶆鐗╃粍缁囧唴锛屾垚涓轰簡鐞嗚В妞嶇墿鐢熼暱鍙戣偛杩囩▼鐨勫叧閿垎瀛愩傝繖浜涘彂鐜板妞嶇墿鐢熺悊瀛︿骇鐢熶簡娣辫繙褰卞搷锛屼负鐜颁唬妞嶇墿鐢熼暱绱鐮旂┒濂犲畾浜嗗熀纭...
  • 鐢熼暱绱犵殑鍙戠幇杩囩▼
    绛旓細鐢熼暱绱犵殑鍙戠幇杩囩▼锛1880骞碈.R.杈惧皵鏂囧強鍏跺瓙鍦ㄦ渶鍚庡嚭鐗堢殑钁椾綔銆妞嶇墿杩愬姩鐨勬湰棰嗐嬩腑闃愭槑锛岀鏈鐨勫姞閭e埄鑽夌殑鑳氳娊闉樿鍒囧幓椤剁灏卞け鍘诲悜鍏夋у搷搴旇兘鍔涖備粬鐨勮В閲婃槸锛氬綋骞艰嫍浠庝晶闈㈠彈鍏夋椂,椤剁浜х敓鐨勫奖鍝鍚戜笅浼犻,閫犳垚鍚戝厜涓庤儗鍏変袱渚х敓闀块熷害涓嶅悓锛屼粠鑰屽紩璧峰悜鍙楀厜涓渚х殑寮洸锛屽洜鑰屽垏鍘婚《绔悗灏变笉鍛堢幇鍚戝厜鎬...
  • 扩展阅读:13岁打了2年生长激素 ... 植物生长过程记录图 ... 生长激素几岁打最好 ... 植物生长1-7天图片 ... 植物生长发育全过程图 ... 植物生长的5个过程 ... 生长激素多少钱一针 ... 五大植物生长激素 ... 让植物快速生长的激素 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网