黑洞的形成以及大小 黑洞是怎么形成的,有多大

\u9ed1\u6d1e\u662f\u5982\u4f55\u5f62\u6210\u7684\uff1f

\u7b80\u5355\u7684\u8bf4\uff0c\u9ed1\u6d1e\u662f\u661f\u4f53\u7684\u5f15\u529b\u584c\u9677\uff0c\u4e5f\u5c31\u662f\u7206\u70b8\u5f62\u6210\u7684\u3002\u661f\u4f53\u7684\u5f15\u529b\u584c\u9677\u540e\u4f1a\u5f62\u6210\u4e00\u4e2a\u5947\u70b9\uff0c\u5947\u70b9\u7684\u8d28\u91cf\u5f88\u5927\uff0c\u5bc6\u5ea6\u5f88\u9ad8\u3002
\u6839\u636e\u5e7f\u4e49\u76f8\u5bf9\u8bba\uff0c\u5f15\u529b\u573a\u5c06\u4f7f\u65f6\u7a7a\u5f2f\u66f2\u3002\u5f53\u6052\u661f\u7684\u4f53\u79ef\u5f88\u5927\u65f6\uff0c\u5b83\u7684\u5f15\u529b\u573a\u5bf9\u65f6\u7a7a\u51e0\u4e4e\u6ca1\u4ec0\u4e48\u5f71\u54cd\uff0c\u4ece\u6052\u661f\u8868\u9762\u4e0a\u67d0\u4e00\u70b9\u53d1\u7684\u5149\u53ef\u4ee5\u671d\u4efb\u4f55\u65b9\u5411\u6cbf\u76f4\u7ebf\u5c04\u51fa\u3002
\u800c\u6052\u661f\u7684\u534a\u5f84\u8d8a\u5c0f\uff0c\u5b83\u5bf9\u5468\u56f4\u7684\u65f6\u7a7a\u5f2f\u66f2\u4f5c\u7528\u5c31\u8d8a\u5927\uff0c\u671d\u67d0\u4e9b\u89d2\u5ea6\u53d1\u51fa\u7684\u5149\u5c31\u5c06\u6cbf\u5f2f\u66f2\u7a7a\u95f4\u8fd4\u56de\u6052\u661f\u8868\u9762\u3002
\u9ed1\u6d1e\u7684\u5f62\u6210\u4e0e\u5b87\u5b99\u5927\u7206\u70b8\u6709\u5173\uff0c\u7269\u7406\u5b66\u5bb6\u53f2\u8482\u82ac\u00b7\u970d\u91d1\u89e3\u91ca\u8bf4\uff0c\u5f53\u4e00\u4e2a\u201d\u767d\u6d1e\u201d\u548c\u4e00\u4e2a\u201c\u9ed1\u6d1e\u201d\u4e0e\u5b83\u4eec\u5468\u56f4\u7684\u73af\u5883\u8fbe\u5230\u70ed\u5e73\u8861\u65f6\uff0c\u767d\u6d1e\u4e0e\u9ed1\u6d1e\u4f1a\u5438\u6536\u548c\u653e\u5c04\u51fa\u7b49\u91cf\u7684\u653e\u5c04\u7269\uff0c\u6240\u4ee5\u767d\u6d1e\u548c\u9ed1\u6d1e\u201d\u662f\u76f8\u4e92\u8054\u7cfb\u5728\u4e00\u8d77\u7684\uff0c\u5f88\u6709\u53ef\u80fd\u5c06\u9ed1\u6d1e\u5012\u7f6e\u8fc7\u6765\u5c31\u662f\u4e00\u76f4\u5728\u5bfb\u627e\u7684\u767d\u6d1e\u4e86\u3002

\u6269\u5c55\u8d44\u6599\uff1a
\u5728\u5b87\u5b99\u4e2d\u6709\u4e00\u4e9b\u5f15\u529b\u975e\u5e38\u5927\u5374\u53c8\u770b\u4e0d\u5230\u4efb\u4f55\u5929\u4f53\u7684\u533a\u57df\uff0c\u79f0\u4e4b\u4e3a\u9ed1\u6d1e\u3002\u9ed1\u6d1e\u662f\u4f4d\u5c45\u5b87\u5b99\u7a7a\u95f4\u548c\u65f6\u95f4\u6784\u9020\u4e2d\u7684\u4e00\u4e9b\u6df1\u4e0d\u89c1\u5e95\u7684\u7c7b\u4f3c\u4e95\u72b6\u7684\u4e1c\u897f\uff0c\u5177\u6709\u6781\u5927\u7684\u5438\u5f15\u529b\uff0c\u5305\u62ec\u5149\u5728\u5185\u7684\u4efb\u4f55\u7269\u4f53\u90fd\u65e0\u6cd5\u9003\u8131\u88ab\u5438\u5165\u7684\u547d\u8fd0\u3002
\u8fd9\u5c31\u4f7f\u5f97\u4eba\u4eec\u5bf9\u4e8e\u9ed1\u6d1e\u7684\u7814\u7a76\u53d8\u5f97\u5f02\u5e38\u56f0\u96be\uff1a\u5b83\u65e2\u4e0d\u5411\u5916\u6563\u53d1\u80fd\u91cf\uff0c\u4e5f\u4e0d\u8868\u73b0\u51fa\u4efb\u4f55\u5f62\u5f0f\u7684\u80fd\u91cf\uff0c\u4eba\u4eec\u6839\u672c\u65e0\u6cd5\u770b\u5230\u5b83\u3002\u56e0\u6b64\uff0c\u4eba\u4eec\u5bf9\u4e8e\u9ed1\u6d1e\u7684\u7814\u7a76\u5c31\u8c61\u662f\u5bf9\u4e00\u79cd\u770b\u4e0d\u89c1\u7684\u4e1c\u897f\u8fdb\u884c\u7814\u7a76\u3002
\u5b87\u5b99\u65cb\u6da1\u573a\u6309\u5927\u5c0f\u5206\u4e3a\u5982\u4e0b\u516b\u79cd\uff1a
U\u65cb\u6da1\u573a\uff1a\u53c8\u53eb\u5b87\u5b99\u65cb\u6da1\u573a\uff0c\u5b83\u7684\u8303\u56f4\u5305\u62ec\u6574\u4e2a\u5b87\u5b99\u3002
S\u65cb\u6da1\u573a\uff1a\u53c8\u53eb\u661f\u7cf8\u56e2\u65cb\u6da1\u573a\uff0c\u5b83\u7684\u8303\u56f4\u5305\u62ec\u6574\u4e2a\u661f\u7cf8\u56e2\u3002
A\u65cb\u6da1\u573a\uff1a\u53c8\u53eb\u53eb\u661f\u7cfb\u65cb\u6da1\u573a\uff0c\u5b83\u7684\u8303\u56f4\u5305\u62ec\u6574\u4e2a\u661f\u7cfb\u3002
B\u65cb\u6da1\u573a\uff1a\u53c8\u53eb\u661f\u56e2\u65cb\u6da1\u573a\uff0c\u5b83\u7684\u8303\u56f4\u5305\u62ec\u6574\u4e2a\u661f\u56e2\u3002
C\u65cb\u6da1\u573a\uff1a\u53c8\u53eb\u6052\u661f\u65cb\u6da1\u573a\uff0c\u5b83\u7684\u8303\u56f4\u88ab\u5c40\u9650\u4e8e\u6052\u661f\u5468\u56f4\uff0c\u5305\u62ec\u6240\u6709\u884c\u661f\u7684\u8fd0\u884c\u8f68\u9053\u3002
D\u65cb\u6da1\u573a\uff1a\u53c8\u53eb\u884c\u661f\u65cb\u6da1\u573a\uff0c\u5b83\u7684\u8303\u56f4\u88ab\u5c40\u9650\u4e8e\u884c\u661f\u5468\u56f4\uff0c\u5305\u62ec\u6240\u6709\u536b\u661f\u7684\u8fd0\u884c\u8f68\u9053\u3002
E\u65cb\u6da1\u573a\uff1a\u53c8\u53eb\u536b\u661f\u65cb\u6da1\u573a\uff0c\u5b83\u7684\u8303\u56f4\u88ab\u5c40\u9650\u4e8e\u536b\u661f\u5468\u56f4\u3002
F\u65cb\u6da1\u573a\uff1a\u6bd4E\u7c7b\u65cb\u6da1\u573a\u5c0f\u7684\u65cb\u6da1\u573a\u3002

\u592a\u9633\u5c5e\u4e8e\u5c0f\u8d28\u91cf\u6052\u661f\uff0c\u76ee\u524d\u5904\u4e8e\u9752\u72b6\u5e74\u65f6\u671f\u3002\u6052\u661f\u4e00\u751f\u7684\u5386\u7a0b\u7531\u5176\u8d28\u91cf\u51b3\u5b9a\u3002\u9996\u5148\uff0c\u8d28\u91cf\u8d8a\u5927\uff0c\u6052\u661f\u5bff\u547d\u8d8a\u77ed\u3002\u5176\u6b21\uff0c\u8d70\u5411\u8001\u5e74\u8870\u4ea1\u671f\u65f6\u8d28\u91cf\u7b49\u7ea7\u4e0d\u540c\u7684\u6052\u661f\u4f1a\u8d70\u4e0d\u540c\u7684\u8def\u3002
\u50cf\u592a\u9633\u8fd9\u6837\u7684\u5c0f\u8d28\u91cf\u6052\u661f\u4f1a\u9996\u5148\u4f53\u79ef\u81a8\u80c0\uff0c\u53d8\u4e3a\u7ea2\u5de8\u661f\uff0c\u7136\u540e\u5411\u5185\u574d\u584c\u540c\u65f6\u5411\u5916\u629b\u6d12\u7269\u8d28\u53d8\u4e3a\u767d\u77ee\u661f\u3002\u800c\u5927\u8d28\u91cf\u7684\u6052\u661f\u5219\u53d8\u4e3a\u7ea2\u8d85\u5de8\u661f\uff0c\u7136\u540e\u53d8\u4e3a\u4e2d\u5b50\u661f\u3002\u8d28\u91cf\u66f4\u5927\u7684\u6052\u661f\u624d\u4f1a\u53d8\u6210\u9ed1\u6d1e\u3002\u592a\u9633\u8d28\u91cf\u8fd8\u4e0d\u591f\u5927\uff0c\u6240\u4ee5\u5c31\u4e0d\u4f1a\u53d8\u6210\u9ed1\u6d1e\u3002
\u6309\u7ec4\u6210\u6765\u5212\u5206\uff0c\u9ed1\u6d1e\u53ef\u4ee5\u5206\u4e3a\u4e24\u5927\u7c7b\u3002\u4e00\u662f\u6697\u80fd\u91cf\u9ed1\u6d1e\uff0c\u4e8c\u662f\u7269\u7406\u9ed1\u6d1e\u3002\u6697\u80fd\u91cf\u9ed1\u6d1e\u4e3b\u8981\u7531\u9ad8\u901f\u65cb\u8f6c\u7684\u5de8\u5927\u7684\u6697\u80fd\u91cf\u7ec4\u6210\uff0c\u5b83\u5185\u90e8\u6ca1\u6709\u5de8\u5927\u7684\u8d28\u91cf\u3002\u5de8\u5927\u7684\u6697\u80fd\u91cf\u4ee5\u63a5\u8fd1\u5149\u901f\u7684\u901f\u5ea6\u65cb\u8f6c\uff0c\u5176\u5185\u90e8\u4ea7\u751f\u5de8\u5927\u7684\u8d1f\u538b\u4ee5\u541e\u566c\u7269\u4f53\uff0c\u4ece\u800c\u5f62\u6210\u9ed1\u6d1e\u3002
\u6697\u80fd\u91cf\u9ed1\u6d1e\u662f\u661f\u7cfb\u5f62\u6210\u7684\u57fa\u7840\uff0c\u4e5f\u662f\u661f\u56e2\u3001\u661f\u7cfb\u56e2\u5f62\u6210\u7684\u57fa\u7840\u3002\u7269\u7406\u9ed1\u6d1e\u7531\u4e00\u9897\u6216\u591a\u9897\u5929\u4f53\u574d\u7f29\u5f62\u6210\uff0c\u5177\u6709\u5de8\u5927\u7684\u8d28\u91cf\u3002
\u5f53\u4e00\u4e2a\u7269\u7406\u9ed1\u6d1e\u7684\u8d28\u91cf\u7b49\u4e8e\u6216\u5927\u4e8e\u4e00\u4e2a\u661f\u7cfb\u7684\u8d28\u91cf\u65f6\uff0c\u6211\u4eec\u79f0\u4e4b\u4e3a\u5947\u70b9\u9ed1\u6d1e\u3002\u6697\u80fd\u91cf\u9ed1\u6d1e\u7684\u4f53\u79ef\u5f88\u5927\uff0c\u53ef\u4ee5\u6709\u592a\u9633\u7cfb\u90a3\u822c\u5927\u3002\u4f46\u7269\u7406\u9ed1\u6d1e\u7684\u4f53\u79ef\u5374\u975e\u5e38\u5c0f\uff0c\u5b83\u53ef\u4ee5\u7f29\u5c0f\u5230\u4e00\u4e2a\u5947\u70b9\u3002 \uff1b\u53e6\u5916\u8fd8\u6709\u767d\u6d1e\u4e0e\u4e4b\u76f8\u5bf9\u3002
\u53c2\u8003\u8d44\u6599\uff1a\u767e\u5ea6\u767e\u79d1\u2014\u2014\u5b87\u5b99\u9ed1\u6d1e\u8bba

\u9ed1\u6d1e\u662f\u5982\u4f55\u5f62\u6210\u7684\uff1f

黑洞是一个时空的黑暗区,由一些质量颇大的星体经重力塌缩后,所剩余的东西就成了黑洞。它的基本特徵是有一个封闭的视界,这视界就是黑洞的边界,一切外来的物质和辐射可以进入这视界以内,但视界内任何物质都不能从里面跑出来。我们可用一句”有入无出”来形容它。

黑洞产生之谜?

当一颗质量相当大的星体之核能耗尽(超新星爆发)后,残骸质量比太阳质量高3倍的恒星核心会演化成黑洞(若中子星有伴星,而中子星吸收足够伴星的物质,也能演化成黑洞)。在黑洞内,没有任何向外力能维持与重力平衡,因此,核心会一直塌缩下去,形成黑洞。

当物质掉进了事界,纵使以光速计算,也不能再走出来。

爱因斯坦以几何角度把黑洞解释为空间扭曲的洞,物质随空间而行,如果空间本身就是洞,是没有物质可逃出的。

黑洞分为四种:

恒星演化出来的黑洞、原始黑洞、重量级黑洞和研究中的中量级黑洞。

黑洞也有界限?

当一个黑洞形成后,所有物质都会向中心塌缩成一个非常细小的质点,称为奇点,黑洞的表面层称为「事件穹界」。

而这表面层和中心奇点的距离就是史瓦半径。任何物质要从黑洞的史瓦半径跑到外面去,它的逃离速度便要大於光速。

但根据狭义相对论,光速是速度的极限,因此,一切物质到了事件穹界便扯向中心的奇点,永不能逃出来。

黑洞是看不见的吗?

黑洞是个因为重力太强以致连速度最快的光也无法脱离的天体。黑洞周围的时空也受到重力的影响而扭曲,产生了一个"事地平面",任何物质只要被它吞噬就再也逃脱不出这范围,它的半径称为"重力半径"。由於连光也无法脱离,所以无法看到事象平面之内侧。

黑洞之发现?

於1990年4月27日,哈勃太空望远镜 Hubble Space Telescope的启用,为人类探索太空揭开了新的一页,虽然在制造时出了错误,使影像大打折扣,可是仍对天文学有莫大的贡献。

近来,人类对一直只是存在於理论范畴内的黑洞,已透过哈勃太空望远镜,有了进一步的证据。於仙女座大星系M31附近的M32发现了一个质量大於太阳三百万倍的黑洞。M32是在我们的银河系附近,距离地球2.3百万光年的星系。它是人类所知密度最高的星系,於直径只有一千光年的范围内(我们的银行河系直径约十万光年),包含了四百万颗星,中心和密度是我们的银河系100个一百万倍左右。假设你生活於M32中心的行星上,你会见到一个密布星光的夜光,光度比一百倍满月还要亮。科学家是由星星於该星系的活动,及其中心密度而推测的。此星系内之星星移动速度较其它一般星系每秒快了100公里。

齐来寻找黑洞吧!

由於黑洞不能发出光线,体积又非常细小,所以是不可能用天文望远镜规测得到地的。但根据理论,如果一对双星中的伴星是黑洞,那麼主星的物质被吸引向黑洞而形成一个吸积环。由於吸积环的物质互相摩刷而引起高温,因而辐射X光线。於是,黑洞搜索者就将重点於X射线密近双星上。

1962年,人们探测所得,位於天鹅座鹅颈内有一股X射线,并将该源命名为是非常有可能是一黑洞。天鹅座X-1是一 X射线源,它的一颗子星 是超蓝巨星,那可能是黑洞而看不见的子星质量。
回答者:笑泉 - 经理 四级 1-19 16:13

--------------------------------------------------------------------------------

“黑洞”是一种天体:它的引力场强大得就连光也不能逃脱出来。根据广义
相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没
什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半
径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间
返回恒星表面。

等恒星的半径小到一特定值(天文学上叫“史瓦西半径”)时,就连垂直表
面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指它就像
宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真
正是“隐形”的,下面将会叙述。

黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒
星演化而来的。我们曾经比较详细地介绍了白矮星和中子星形成的过程。当一颗
恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已
经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳
的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力
与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子
星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过
了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一
个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度
(史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向
外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无
法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎
么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传
播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯
曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,
而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏
离了原来的方向。

在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,
空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部
分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。

所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,
这就是黑洞的隐身术。

更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它
方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能
看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!

“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多
科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,
这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。
回答者:成都疯子 - 秀才 三级 1-19 16:15

--------------------------------------------------------------------------------

是指恒星爆炸后产生的漩涡,你最好别进去!
回答者:beckham2003 - 见习魔法师 二级 1-19 16:18

--------------------------------------------------------------------------------

一种特殊的天体
回答者:randorg - 秀才 三级 1-19 16:19

--------------------------------------------------------------------------------

黑洞是宇宙中的天体.1969年美国科学家约翰 惠勒为形象地描述太空不明物所杜撰的名字.1973年约翰 米歇尔在一篇文章中阐述了一个巨大质量极其致密的恒星有足够大的引力场甚致连光都不能逃逸的天体叫黑洞.
回答者:zhangzo4925 - 助理 三级 1-19 16:27

--------------------------------------------------------------------------------

爱因斯坦提出广义相对论后的第二年,也就是1916年,史瓦西就在理论中发现了黑洞的存在,但直到1960年,科学家们才理解并接受了黑洞的存在。
很多黑洞仅仅是打质量恒星演化的重点。这些恒星的质量在太阳的10倍以上。在他们的一生中,总有两种不同的力量在相互抗衡:自身的引力向内施压,而内部热核聚变反应所产生的能量则向外施压。当这两种力量不分伯仲的时候,恒星就处于较为稳定的状态。但恒星内部用于热核聚变的燃料终有一天要用尽,当这一天来临时,力量的悬殊就会显现出来。一旦引力占了上风,恒星就无可避免的向内坍缩,并且引力的作用会越来越剧烈。随着恒星的物质变得越来越致密,它的逃逸速度也就越来越大。当恒星致密到逃逸速度大于光速时,一个黑洞就形成了。此时,即便是宇宙间运动速度最快的物质——光——也无法逃离黑洞了。
另外,宇宙中还有一些质量非常巨大的黑洞,他们位于星系和类星体的中心。比如我们银河系的中心就有一颗超大质量的黑洞,它的质量是太阳的400万倍。这些黑洞的形成过程还不完全清晰。但不论哪种黑洞,他们都不过是天体的一种极端的存在形式。
回答者:sirius115 - 助理 二级 1-19 16:27

--------------------------------------------------------------------------------

黑洞是什么

黑洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。

因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里?

黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样

为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。

让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。

爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。

同样的道理,宇宙中的大质量物体会使宇宙结构发生畸变。正如10块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害得多。

如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方 ,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。

现在再来看看黑洞对于其周围的时空区域的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面发生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。

现在我们来看看为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。

我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。

处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。

我们都知道因为黑洞不能反射光,所以看不见。在我们的脑海中黑洞可能是遥远而又漆黑的。但英国著名物理学家霍金认为黑洞并不如大多数人想象中那样黑。通过科学家的观测,黑洞周围存在辐射,而且很可能来自于黑洞,也就是说,黑洞可能并没有想象中那样黑。
霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子发生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。

霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。

所以,引用霍金的话就是“黑洞并没有想象中的那样黑”,它实际上还发散出大量的光子。

根据爱因斯坦的能量与质量守恒定律。当物体失去能量时,同时也会失去质量。黑洞同样遵从能量与质量守恒定律,当黑洞失去能量时,黑洞也就不存在了。霍金预言,黑洞消失的一瞬间会产生剧烈的爆炸,释放出的能量相当于数百万颗氢弹的能量。

但你不要满怀期望地抬起头,以为会看到一场烟花表演。事实上,黑洞爆炸后,释放的能量非常大,很有可能对身体是有害的。而且,能量释放的时间也非常长,有的会超过100亿至200亿年,比我们宇宙的历史还长,而彻底散尽能量则需要数万亿年的时间
黑洞
谈黑洞是在普遍没有了解引力场本质的情况下谈黑洞。
如果按照黑洞定义谈黑洞,那宇宙中的黑洞是不存在的。
因为宇宙中的物质具有物质的本质特性。
按照宇宙中物质本质特性,不可能恒星发出的光又会被恒星吸收回恒星。
黑洞是一种体积极小,质量极大的恒星,在其强大的引力下,连光也无法逃逸———从恒星表面发出的光,还没有到达远处即被该恒星自身的引力吸引回恒星。
一团物质,如果其引力场强大到足以使时空完全弯曲而围绕它自身,因而任何东西,甚至连光都无法逃逸,就叫做黑洞.不太多的物质被压缩到极高密度(例如将地球压缩到一粒豌豆大小),或者,极大的一团较低密度物质(例如几百万倍于太阳的质量分布在直径与太阳系一样的球中,大致具有水的密度),都能出现这种情形.
第一位提出可能存在引力强大到光线不能逃离的'黑洞'的人是皇家学会特别会员约翰·米切尔,他于1783年向皇家学会陈述了这一见解.米切尔的计算依据是牛顿引力理论和光的微粒理论.前者是当时最好的引力理论.后者则把光设想为有如小型炮弹的微小粒子(现在叫做光子)流.米切尔假定,这些光粒子应该像任何其他物体一样受到引力的影响.由于奥利·罗默(Ole Romer)早在100多年前就精确测定了光速.所以米切尔得以计算一个具有太阳密度的天体必须多大,才能使逃逸速度大于光速.
如果这样的天体存在,光就不能逃离它们,所以它们应该是黑的.太阳表面的逃逸速度只有光速的0.2%,但如果设想一系列越来越大但密度与太阳相同的天体,则逃逸速度迅速增高.米切尔指出,直径为太阳直径500倍的这样一个天体(与太阳系的大小相似),其逃逸速度应该超过光速.
皮埃尔·拉普拉斯(Pierre Laplace)独立得出并于1796年发表了同样的结论.米切尔在一次特具先见之明的评论中指出,虽然这样的天体是看不见的,但'如果碰巧任何其他发光天体围绕它们运行,我们也许仍有可能根据这些绕行天体的运动情况推断中央天体的存在.换言之,米切尔认为,如果黑洞存在于双星中,那将最容易被发同.但这一有在黑星的见解在19世纪被遗忘了,直到天文学家认识到黑洞可经由另一途径产生,在研讨阿尔伯特·爱因斯坦的广义相对论时才重新提起.
第一次世界大战时在东部战线服役的天文学家卡尔·史瓦西(Karl Schwarzschild)是最先对爱因斯坦理论结论进行分析的人之一.广义相对论将引力解释为时空在物质近旁弯曲的结果.史瓦西计算了球形物体周围时空几何特性的严格数学模型,将它的计算寄给爱因斯坦,后者于1916年初把它们提交给普鲁士科学院.这些计算表明,对'任何'质量者存在一个临界半径,现在称为史瓦西半径,它对应时空一种极端的变形,使得如果质量被挤压到临界半径以内,空间将弯曲到围绕该物体并将它与宇宙其余部分隔断开来.它实际上成为了一个自行其是的独立的宇宙,任何东西(光也在内)都无法逃离它.
对于太阳史瓦西半径是公里对于地球,它等于0.88厘米.这并不意味太阳或地球中心有一个大小合适现在称为黑洞(这个名词是1967年才首次由约翰·惠勒用于这一含义的东西存在.在离天体中心的这一距离上,时空没有任何反常.史瓦西计算表明的是,如果太阳被挤压进半径2.9公里的球内,或者,如果地球被挤压进半径仅0.88厘米的球内,它们就将永远在一个黑洞内而与外部宇宙隔离.物质仍然可以掉进这样一个黑洞但没东西能够逃出来.
这些结论被看成纯粹数学珍藏品达数十年之久,因为没有人认为真正的、实在的物体能够坍缩到形成黑洞所要求的极端密度。1920年代开始了解了白矮星,但即使白矮星也拥有与太阳大致相同的质量而大小却与地球差不多,其半径远远大于3公里。人们也未能及时领悟到,如果有大量的一般密度物质,也可以造出一个本质上与米切尔和拉普拉斯所想像的相同的黑洞。与任意质量M对应的史瓦西半径由公式2GM/c2给出,其中G是引力常数。c是光速。
1930年代,萨布拉曼扬·昌德拉塞卡(Subrahmanyan Chandrasekhar)证明,即使一颗白矮星,也仅当其质量小于1.4倍太阳质量时才是稳定的,任何死亡的星如果比这更重,必将进一步坍缩。有些研究家想到了这也许会导致形成中子星的可能性,中子星的典型半径仅约白矮星的1/700,也就是几公里大小。但这个思想一直要等到1960年代中期发现脉冲星,证明中子星确实存在之后,才被广泛接受。
这重新燃起了对黑洞理论的兴趣,因为中子星差不多就要变成黑洞了。虽然很难想像将太阳压缩到半径2.9公里以内,但现在已经知道存在质量与太阳相当、半径小于10公里的中子星,从中子星到黑洞也就一步之遥了。
理论研究表明,一个黑洞的行为仅由其三个特性所规定——它的质量、它的电荷和它的自转(角动量)。无电荷、无自转的黑洞用爱因斯坦方程式的史瓦西解描述;有电荷、无自转的黑洞用赖斯纳—诺德斯特罗姆解描述;无电荷、有自转的黑洞用克尔解描述;有电荷、有自转的黑洞用克尔—纽曼解描述。黑洞没有其他特性,这已由‘黑洞没有毛发’这句名言所概括。现实的黑洞大概应该是自转而无电荷,所以克尔解最令人感兴趣。
现在都认为,黑洞和中子星都是在磊质量恒星发生超新星爆发时的临死挣扎中产生的。计算表明,任何质量大致小于3倍太阳质量(奥本海默—弗尔科夫极限)的至密超新星遗迹可以形成稳定的中子星,但任何质量大于这一极限的致密进退新星遗迹将坍缩为黑洞,其内容物将被压进黑洞中心的奇点,这正好是宇宙由之诞生的大爆炸奇点的镜像反转。如果这样一个天体碰巧在绕一颗普通恒星的轨道上,它将剥夺伴星的物质,形成一个由向黑洞汇集的热物质构成的吸积盘。吸积盘中的温度可以升至极高,以致它能辐射X射线,而使黑洞可被探测到。
1970年代初,米切尔的预言有了反响:在一个双星系统中发现了这样一种天体。一个叫做天鹅座X—1的X射线源被证认为恒星HDE226868。这个系统的轨道动力学特性表明,该源的X射线来自围绕可见星轨道上一个比地球小的天体,但源的质量却大于奥本海默—弗尔科夫极限。这只可能是一个黑洞。此后,用同一方法又证认了其他少数几个黑洞。而1994年天鹅座V404这个系统成为迄今最佳黑洞‘候选体’,这是一个质量为太阳质量70%的恒星围绕大约12倍太阳质量的X射线源运动的系统。但是,这些已被认可的黑洞证认大概不过是冰山之尖而已。
这种‘恒星质量’黑洞,正如米切尔领悟的,只有当它们在双星系统中时才能探测到。一个孤立的黑洞无愧于它的名称——它是黑暗的、不可探测的。然而,根据天体物理学理论,很多恒星应该以中子星或黑洞作为其生命的结束。观测者在双星系统中实际上探测到的合适黑洞候选者差不多与他们发现的脉冲双星一样多,这表示孤立的恒星质量黑洞数目应该与孤立的脉冲星数目相同,这一推测得到了理论计算的支持。 我们银河系中现在已知大约500个活动的脉冲星。但理论表明,一个脉冲星作为射电源的活动期是很短的,它很快衰竭成无法探测的宁静状态。所以,相应地我们周围应该存在更多的‘死’脉冲星(宁静中子星)。我们的银河指法含有1000亿颗明亮的恒星,而且已经存在了数十亿年之久。最佳的估计是,我们银河指法今天含有4亿个死脉冲星,而恒星质量黑洞数量的甚至保守估计也达到这一数字的¼——1亿个。如果真有这么多黑洞,而黑洞又无规则地散布在银河系中的话,则最近的一个黑洞也离我们仅仅15光年。既然我们银河系没有什么独特之处,那么宇宙中每个其他的星系也应该含有同样多的黑洞。Ic
星系也可能含有某种很像米切尔的拉普拉斯最初设想的‘黑星’的天体。这样的天体现在称为‘特大质量黑洞’,被认为存在于活动星系和类星体的中心,它们提供的引力能可能解释这些天体的巨大能量来源。一个大小如太阳系、质量数百万倍于太阳质量的黑洞,可以从周围每年食掉一到两颗恒星的物质。在这个过程中,很大一部分恒星质量将遵照爱因斯坦分工E=mc2转变成能量。宁静的超大质量黑洞可能存在于包括我们银河系在内的所有星 一团物质,如果其引力场强大到足以使时空完全弯曲而围绕它自身,因而任何东西,甚至连光都无法逃逸,就叫做黑洞.不太多的物质被压缩到极高密度(例如将地球压缩到一粒豌豆大小),或者,极大的一团较低密度物质(例如几百万倍于太阳的质量分布在直径与太阳系一样的球中,大致具有水的密度),都能出现这种情形.
第一位提出可能存在引力强大到光线不能逃离的'黑洞'的人是皇家学会特别会员约翰·米切尔,他于1783年向皇家学会陈述了这一见解.米切尔的计算依据是牛顿引力理论和光的微粒理论.前者是当时最好的引力理论.后者则把光设想为有如小型炮弹的微小粒子(现在叫做光子)流.米切尔假定,这些光粒子应该像任何其他物体一样受到引力的影响.由于奥利·罗默(Ole Romer)早在100多年前就精确测定了光速.所以米切尔得以计算一个具有太阳密度的天体必须多大,才能使逃逸速度大于光速.
如果这样的天体存在,光就不能逃离它们,所以它们应该是黑的.太阳表面的逃逸速度只有光速的0.2%,但如果设想一系列越来越大但密度与太阳相同的天体,则逃逸速度迅速增高.米切尔指出,直径为太阳直径500倍的这样一个天体(与太阳系的大小相似),其逃逸速度应该超过光速.
皮埃尔·拉普拉斯(Pierre Laplace)独立得出并于1796年发表了同样的结论.米切尔在一次特具先见之明的评论中指出,虽然这样的天体是看不见的,但'如果碰巧任何其他发光天体围绕它们运行,我们也许仍有可能根据这些绕行天体的运动情况推断中央天体的存在.换言之,米切尔认为,如果黑洞存在于双星中,那将最容易被发同.但这一有在黑星的见解在19世纪被遗忘了,直到天文学家认识到黑洞可经由另一途径产生,在研讨阿尔伯特·爱因斯坦的广义相对论时才重新提起.
第一次世界大战时在东部战线服役的天文学家卡尔·史瓦西(Karl Schwarzschild)是最先对爱因斯坦理论结论进行分析的人之一.广义相对论将引力解释为时空在物质近旁弯曲的结果.史瓦西计算了球形物体周围时空几何特性的严格数学模型,将它的计算寄给爱因斯坦,后者于1916年初把它们提交给普鲁士科学院.这些计算表明,对'任何'质量者存在一个临界半径,现在称为史瓦西半径,它对应时空一种极端的变形,使得如果质量被挤压到临界半径以内,空间将弯曲到围绕该物体并将它与宇宙其余部分隔断开来.它实际上成为了一个自行其是的独立的宇宙,任何东西(光也在内)都无法逃离它.
对于太阳史瓦西半径是公里对于地球,它等于0.88厘米.这并不意味太阳或地球中心有一个大小合适现在称为黑洞(这个名词是1967年才首次由约翰·惠勒用于这一含义的东西存在.在离天体中心的这一距离上,时空没有任何反常.史瓦西计算表明的是,如果太阳被挤压进半径2.9公里的球内,或者,如果地球被挤压进半径仅0.88厘米的球内,它们就将永远在一个黑洞内而与外部宇宙隔离.物质仍然可以掉进这样一个黑洞但没东西能够逃出来.

黑洞
黑洞是密度超大的星球,吸纳一切,光也逃不了.
(现在有科学家分析,宇宙中不存在黑洞,这需要进一步的证明,但是我们在学术上可以存在不同的意见)
首先,对黑洞进行一下形象的说明:
黑洞有巨大的引力,连光都被它吸引.黑洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。
再从物理学观点来解释一下:
黑洞其实也是个星球(类似星球),只不过它的密度非常非常大, 靠近它的物体都被它的引力所约束(就好像人在地球上没有飞走一样),不管用多大的速度都无法脱离。对于地球来说,以第二宇宙速度(11.2km/s)来飞行就可以逃离地球,但是对于黑洞来说,它的第三宇宙速度之大,竟然超越了光速,所以连光都跑不出来,于是射进去的光没有反射回来,我们的眼睛就看不到任何东西,只是黑色一片。

因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里?

黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样

为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。

让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。

爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。

同样的道理,宇宙中的大质量物体会使宇宙结构发生畸变。正如10块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害得多。

如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方 ,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。

现在再来看看黑洞对于其周围的时空区域的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面发生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。

现在我们来看看为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。

我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。

处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。

我们都知道因为黑洞不能反射光,所以看不见。在我们的脑海中黑洞可能是遥远而又漆黑的。但英国著名物理学家霍金认为黑洞并不如大多数人想象中那样黑。通过科学家的观测,黑洞周围存在辐射,而且很可能来自于黑洞,也就是说,黑洞可能并没有想象中那样黑。霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子发生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。

霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。

所以,引用霍金的话就是“黑洞并没有想象中的那样黑”,它实际上还发散出大量的光子。

根据爱因斯坦的能量与质量守恒定律。当物体失去能量时,同时也会失去质量。黑洞同样遵从能量与质量守恒定律,当黑洞失去能量时,黑洞也就不存在了。霍金预言,黑洞消失的一瞬间会产生剧烈的爆炸,释放出的能量相当于数百万颗氢弹的能量。

但你不要满怀期望地抬起头,以为会看到一场烟花表演。事实上,黑洞爆炸后,释放的能量非常大,很有可能对身体是有害的。而且,能量释放的时间也非常长,有的会超过100亿至200亿年,比我们宇宙的历史还长,而彻底散尽能量则需要数万亿年的时间

“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。

等恒星的半径小于一特定值(天文学上叫“施瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指任何物质一旦掉进去,就再不能逃出,包括光。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。

那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。

当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。

在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。

更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!

“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

按组成来划分,黑洞可以分为两大类。一是暗能量黑洞,二是物理黑洞。暗能量黑洞主要由高速旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量以接近光速的速度旋转,其内部产生巨大的负压以吞噬物体,从而形成黑洞,详情请看宇“宙黑洞论”。暗能量黑洞是星系形成的基础,也是星团、星系团形成的基础。物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,我们称之为奇点黑洞。暗能量黑洞的体积很大,可以有太阳系那般大。但物理黑洞的体积却非常小,它可以缩小到一个奇点。

黑洞吸积

黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。

天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星——包括地球——也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。

然而黑洞并不是什么都吸收的,它也往外边散发质子.

爆炸的黑洞

黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬·霍金于1974年做此语言时,整个科学界为之震动。黑洞曾被认为是宇宙最终的沉淀所:没有什么可以逃出黑洞,它们吞噬了气体和星体,质量增大,因而洞的体积只会增大,霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量,这种“霍金辐射”对大多数黑洞来说可以忽略不计,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。

奇妙的萎缩的黑洞

当一个粒子从黑洞逃逸而没有偿还它借来的能量,黑洞就会从它的引力场中丧失同样数量的能量,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。因此,黑洞将变轻变小。

沸腾直至毁灭

所有的黑洞都会蒸发,只不过大的黑洞沸腾得较慢,它们的辐射非常微弱,因此另人难以觉察。但是随着黑洞逐渐变小,这个过程会加速,以至最终失控。黑洞委琐时,引力并也会变陡,产生更多的逃逸粒子,从黑洞中掠夺的能量和质量也就越多。黑洞委琐的越来越快,促使蒸发的速度变得越来越快,周围的光环变得更亮、更热,当温度达到10^15℃时,黑洞就会在爆炸中毁灭。

关于黑洞的文章:
自古以来,人类便一直梦想飞上蓝天,可没人知道在湛蓝的天幕之外还有一个硕大的黑色空间。在这个空间有光,有水,有生命。我们美丽的地球也是其中的一员。虽然宇宙是如此绚烂多彩,但在这里也同样是危机四伏的。小行星,红巨星,超新星大爆炸,黑洞……
黑洞,顾名思义就是看不见的具有超强吸引力的物质。自从爱因斯坦和霍金通过猜测并进行理论推导出有这样一种物质之后,科学家们就在不断的探寻,求索,以避免我们的星球被毁灭。
也许你会问,黑洞与地球毁灭有什么关系?让我告诉你,这可大有联系,待你了解他之后就会明白。
黑洞,实际上是一团质量很大的物质,其引力极大(仡今为止还未发现有比它引力更大的物质),形成一个深井。它是由质量和密度极大的恒星不断坍缩而形成的,当恒星内部的物质核心发生极不稳定变化之后会形成一个称为“奇点”的孤立点(有关细节请查阅爱因斯坦的广义相对论)。他会将一切进入视界的物质吸入,任何东西不能从那里逃脱出来(包括光)。他没有具体形状,也无法看见它,只能根据周围行星的走向来判断它的存在。也许你会因为它的神秘莫测而吓的大叫起来,但实际上根本用不着过分担心,虽然它有强大的吸引力但与此同时这也是判断它位置的一个重要证据,就算它对距地球极近的物质产生影响时,我们也还有足够的时间挽救,因为那时它的“正式边界”还离我们很远。况且,恒星坍缩后大部分都会成为中子星或白矮星。但这并不意味着我们就可以放松警惕了(谁知道下一刻被吸入的会不会是我们呢?),这也是人类研究它的原因之一。
我们已经了解了他可怕的吸引力,但没人清楚被吸入后会是怎样的一片景象。对此,学者、科学家们也是莫衷一是,众说纷纭的。有人认为,被他吸入的物质会被毁灭。有的人则认为,黑洞是通往另一宇宙空间的通道。到底被吸入之后会如何我们也不得而知,也许只有那些被吸进去的物质才了解吧!
黑洞只是宇宙千千万万奥秘中的一员,但我们探求它的小部分秘密就不知花费了多少时间,一代人的力量是有限的,但千百万代人的力量汇聚在一起就一定会成功,相信我们以及我们的后代在不久的将来会将黑洞以至整个宇宙的奥秘完全探求出来。

恒星,白矮星,中子星,夸克星,黑洞是依次的五个密度当量星体,密度最小的当然是恒星,黑洞是物质的终极形态,黑洞之后就会发生宇宙大爆炸,能量释放出去后,又进入一个新的循环.

另外黑洞在网络中指电子邮件消息丢失或Usenet公告消失的地方。

黑洞这一术语是不久以前才出现的。它是1969年美国科学家约翰·惠勒为形象描述至少可回溯到200年前的这个思想时所杜撰的名字。那时候,共有两种光理论:一种是牛顿赞成的光的微粒说;另一种是光的波动说。我们现在知道,实际上这两者都是正确的。由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能使之慢下来,但是罗麦关于光速度有限的发现表明引力对之可有重要效应。

1783年,剑桥的学监约翰·米歇尔在这个假定的基础上,在《伦敦皇家学会哲学学报》上发表了一篇文章。他指出,一个质量足够大并足够紧致的恒星会有如此强大的引力场,以致于连光线都不能逃逸——任何从恒星表面发出的光,还没到达远处即会被恒星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里发出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸引作用。这正是我们现在称为黑洞的物体。它是名符其实的——在空间中的黑的空洞。几年之后,法国科学家拉普拉斯侯爵显然独自提出和米歇尔类似的观念。非常有趣的是,拉普拉斯只将此观点纳入他的《世界系统》一书的第一版和第二版中,而在以后的版本中将其删去,可能他认为这是一个愚蠢的观念。(此外,光的微粒说在19世纪变得不时髦了;似乎一切都可以以波动理论来解释,而按照波动理论,不清楚光究竟是否受到引力的影响。)

事实上,因为光速是固定的,所以,在牛顿引力论中将光类似炮弹那样处理实在很不协调。(从地面发射上天的炮弹由于引力而减速,最后停止上升并折回地面;然而,一个光子必须以不变的速度继续向上,那么牛顿引力对于光如何发生影响呢?)直到1915年爱因斯坦提出广义相对论之前,一直没有关于引力如何影响光的协调的理论。甚至又过了很长时间,这个理论对大质量恒星的含意才被理解。

为了理解黑洞是如何形成的,我们首先需要理解一个恒星的生命周期。起初,大量的气体(大部分为氢)受自身的引力吸引,而开始向自身坍缩而形成恒星。当它收缩时,气体原子相互越来越频繁地以越来越大的速度碰撞——气体的温度上升。最后,气体变得如此之热,以至于当氢原子碰撞时,它们不再弹开而是聚合形成氦。如同一个受控氢弹爆炸,反应中释放出来的热使得恒星发光。这增添的热又使气体的压力升高,直到它足以平衡引力的吸引,这时气体停止收缩。这有一点像气球——内部气压试图使气球膨胀,橡皮的张力试图使气球缩小,它们之间存在一个平衡。从核反应发出的热和引力吸引的平衡,使恒星在很长时间内维持这种平衡。然而,最终恒星会耗尽了它的氢和其他核燃料。貌似大谬,其实不然的是,恒星初始的燃料越多,它则燃尽得越快。这是因为恒星的质量越大,它就必须越热才足以抵抗引力。而它越热,它的燃料就被用得越快。我们的太阳大概足够再燃烧50多亿年,但是质量更大的恒星可以在1亿年这么短的时间内用尽其燃料, 这个时间尺度比宇宙的年龄短得多了。当恒星耗尽了燃料,它开始变冷并开始收缩。随后发生的情况只有等到本世纪20年代末才初次被人们理解。

1928年,一位印度研究生——萨拉玛尼安·强德拉塞卡——乘船来英国剑桥跟英国天文学家阿瑟·爱丁顿爵士(一位广义相对论家)学习。(据记载,在本世纪20年代初有一位记者告诉爱丁顿,说他听说世界上只有三个人能理解广义相对论,爱丁顿停了一下,然后回答:“我正在想这第三个人是谁”。)在他从印度来英的旅途中,强德拉塞卡算出在耗尽所有燃料之后,多大的恒星可以继续对抗自己的引力而维持自己。这个思想是说:当恒星变小时,物质粒子靠得非常近,而按照泡利不相容原理,它们必须有非常不同的速度。这使得它们互相散开并企图使恒星膨胀。一颗恒星可因引力作用和不相容原理引起的排斥力达到平衡而保持其半径不变,正如在它的生命的早期引力被热所平衡一样。

然而,强德拉塞卡意识到,不相容原理所能提供的排斥力有一个极限。恒星中的粒子的最大速度差被相对论限制为光速。这意味着,恒星变得足够紧致之时,由不相容原理引起的排斥力就会比引力的作用小。强德拉塞卡计算出;一个大约为太阳质量一倍半的冷的恒星不能支持自身以抵抗自己的引力。(这质量现在称为强德拉塞卡极限。)苏联科学家列夫·达维多维奇·兰道几乎在同时也得到了类似的发现。

这对大质量恒星的最终归宿具有重大的意义。如果一颗恒星的质量比强德拉塞卡极限小,它最后会停止收缩并终于变成一颗半径为几千英哩和密度为每立方英寸几百吨的“白矮星”。白矮星是它物质中电子之间的不相容原理排斥力所支持的。我们观察到大量这样的白矮星。第一颗被观察到的是绕着夜空中最亮的恒星——天狼星转动的那一颗。

兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。它们的半径只有10英哩左右,密度为每立方英寸几亿吨。在中子星被第一次预言时,并没有任何方法去观察它。实际上,很久以后它们才被观察到。

另一方面,质量比强德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,以避免灾难性的引力坍缩。但是很难令人相信,不管恒星有多大,这总会发生。怎么知道它必须损失重量呢?即使每个恒星都设法失去足够多的重量以避免坍缩,如果你把更多的质量加在白矮星或中子星上,使之超过极限将会发生什么?它会坍缩到无限密度吗?爱丁顿为此感到震惊,他拒绝相信强德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威——爱丁顿的敌意使强德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。

强德拉塞卡指出,不相容原理不能够阻止质量大于强德拉塞卡极限的恒星发生坍缩。但是,根据广义相对论,这样的恒星会发生什么情况呢?这个问题被一位年轻的美国人罗伯特·奥本海默于1939年首次解决。然而,他所获得的结果表明,用当时的望远镜去观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默本人非常密切地卷入到原子弹计划中去。战后,由于大部分科学家被吸引到原子和原子核尺度的物理中去,因而引力坍缩的问题被大部分人忘记了。但在本世纪60年代,现代技术的应

图6.1用使得天文观测范围和数量大大增加, 重新激起人们对天文学和宇

宙学的大尺度问题的兴趣。奥本海默的工作被重新发现,并被一些人推广。

现在,我们从奥本海默的工作中得到一幅这样的图象:恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端发出后在空间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去(图6.1) 。根据相对论,没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。

当你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中没有绝对时间。每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩,按照他的表,每一秒钟发一信号到一个绕着该恒星转动的空间飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径,此时引力场强到没有任何东西可以逃逸出去,他的信号再也不能传到空间飞船了。当11点到达时,他在空间飞船中的伙伴发现,航天员发来的一串信号的时间间隔越变越长。但是这个效应在10点59分59秒之前是非常微小的。在收到10点59分58秒和10点59分59秒发出的两个信号之间,他们只需等待比一秒钟稍长一点的时间,然而他们必须为11点发出的信号等待无限长的时间。按照航天员的手表,光波是在10点59分59秒和11点之间由恒星表面发出;从空间飞船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之朦胧,以至于从空间飞船上再也看不见它,所余下的只是空间中的一个黑洞。然而,此恒星继续以同样的引力作用到空间飞船上,使飞船继续绕着所形成的黑洞旋转。

但是由于以下的问题,使得上述情景不是完全现实的。你离开恒星越远则引力越弱,所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临界半径而形成事件视界之前,这力的差就已经将我们的航天员拉成意大利面条那样,甚至将他撕裂!然而,我们相信,在宇宙中存在质量大得多的天体,譬如星系的中心区域,它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返的那一点时,都没注意到。但是,

黑洞的形成
一个光亮的恒星为什麼会变成黑洞 答案是恒星衰老了.恒星的成份多为氢气,也就是让兴登堡号这样的飞船飘浮不坠的轻质物质.氢就是让恒星发光的燃料.每个恒星的内部都在进行核融合反应,有点像连续引爆氢弹那样,将氢气转化为能量:光与热.恒星在「燃烧」氢气时,必得面对一场拉锯战:一方面恒星内部的热压力会促使恒星扩张,就像把气球吹大那样:另一方面,恒星本身重力的拉扯力又促使恒星缩回来.因此恒星在发热时,这场拉锯战是陷於胶著状态的,恒星的大小也不会起变化.但一旦核反应停止,恒星就得对重力让步,因而整个崩溃下来,就像气球泄了气一样.
不过恒星年纪一大就开始变冷.由於没有了热能,这个老迈的庞然大物无法产生足够的内部压力以抵抗重力的收缩,因此开始崩溃并缩小.但恒星虽然在缩小,却没有损失任何物质;氢仍旧在,只是被极力压缩而已.这意味著恒星所有的质量都向中心趋进许多,也就是将重力集中於一个小地方.小型的恒星会缩小成所谓的「白矮星」,与地球大小相当,但已停止核融合的恒星.较大的恒星则在一抹耀眼的华光,所谓的「超新星」爆炸中自我毁灭殆尽,原来的质量几乎被轰得一点不剩.
但如果恒星的剩余质量够大(约达我们的太阳质量的一点四倍)那麼这些仅存的物质可能会变成黑洞.以下图为例,这个恒星被压缩到直径只有一英哩.此时表面上的重力强得连它自己的光都无法逃脱.那个天体还在原地,再也看不到它了.任何接近它的物体都会被吸进去,然后消逝在「黑洞」中.
←黑洞行成过程
黑洞和时间的关系
依照爱因斯坦的相对论,重力会使时间慢下来.因此当我们接近黑洞的时候,由於受到极强的重力效应,时间确实会缓慢下来,甚至有可能在我们接近到黑洞某个范围内,当经过一秒钟时,外界已过了100年.
若把时钟放在重力微弱的地方(例如地球)是很难(但仍可以办到)测出重力对时间的影响的.但若把时钟放在重力强大,如黑洞之处,则立刻可见到重力对时间产生的影响,至於影响之大小又依观察者位置之不同而有不同.对於掉入黑洞中的太空旅行者而言,重力增大会使他对事物的认知加快;他会觉得他被黑洞吸了进去,一下子就到了「底」.但对位於远方,不受黑洞影响的观察者而言,看到的情形与此恰好相反.在他们的眼中,那位不幸的太空人似乎动得很慢,而且好像越接近黑洞,就移动得越缓慢.原因是,根据相对论的预测,黑洞的强大重力会使时间延缓下来,所以那个太空人似乎永远都还没掉落到底.在最底下的地方 所有的质量和能量都被浓缩为极小的点 空间消失了,时间也停止了.黑洞内应用於外界的一切物理定律都宣告终止,因此我们无从得知黑洞里到底是何种光景.
有一位学家〈史瓦西〉算出一个范围,再范围之内的时间和各种物理现象都和外面不同,例如:时间较慢,重力较大.因为是史瓦西算出来的,所以称为史瓦西半径界面,又称事像地平面.
事像地平面指的是黑洞内时间与外界是完全不同的状态由於光被重力所牵引,在黑洞里的时间一分钟或许等於外界的数十年好比说你现在被吸入黑洞内,你在里面一分钟后就会被挤缩压毁可是或许在几秒后你看到了有其他人也被吸入黑洞内,但这其实是数十年后被吸入的...
黑洞的两极喷流

↑1997年6月9日美国太空总署发布新闻指出,哈柏太空望远镜红外光广角镜头摄得NGC4151星系核心附近的一颗黑洞正进行烟火般的喷流景象(左上图).其他3张照片分别是利用紫外光(左下图),可见光(右图上下)所摄得,每张图的中央处正是黑洞的所在位置,而黑洞的喷流是以对称的方式呈现.
自从1911年爱因斯坦发表弯曲时空的「广义相对论」后不久,很多天文物理学者都相信在强大重力作用下会有黑洞的存在.因为一般初步的想法是类似地心引力 (重力)的作用,若在如此强大重力作用下,会不断地吞噬附近的物质,连在真空中每秒速度高达30万公里的「光」临近黑洞时都无法幸免,无法逃脱它强大重力的吸引.况且只有物质被吸入而不会释放出来,所以它是我们无法目视得到会有任何东西呈现的黑暗「区域」,我们称为「黑洞」.
在一般人的心目中,黑洞在宇宙中就好像地球上传闻已久的神秘百慕达三角地带.从一些简短的报导里,我们知道黑洞在宇宙的时空里是一个非常小的点,但这一小小的点却有无穷的吸引力(重力),会不停吞噬它周遭的物质(如尘埃,星体),即使光波也在所难免.一般人相信黑洞可能是由巨型星球演化,经超新星爆发后,接近星体中心的物质剧烈地塌陷而成的.存在宇宙中的数目可能很多,且还有很多奇怪而未经证实的特性,足以影响人类对於整个宇宙和时空的想法.
近代天文物理学大师史蒂芬 霍金 (也就是「时间之箭」一书的作者)在1974 年提到「黑洞蒸发」的论点,他强调黑洞所吞噬物质的状态,是像量子物理所说的呈现出量子化的「激发态」(不稳定状态),这时会在南北两极的地方向外喷流出激发态的物质,这就是所谓的「黑洞蒸发」现象.
直到哈柏太空天文望远镜上了太空且发挥功能,藉著它的广角镜头红外光相机所拍摄的红外光谱图案(因为红外光可穿透各个星球外围云气的障碍)让我们可直接看到星球的原貌.终於在1997年5月12日,NASA宣布发现了距离我们5千万光年外的 M84 星系中心处,有颗约为太阳3亿倍质量的黑洞正像放烟火般地喷流出大量物质.接下来,天文学家利用哈柏太空天文望远镜和欧洲的红外光太空望远镜,也发现许多黑洞都有像烟火般的喷流景象.
↑1997年5月12日美国太空总署 (NASA)发布消息指出,利用哈柏太空望远镜上红外光相机广角镜头的光谱图影像,发现在M84星系中心处有一个约为太阳3亿倍质量的黑洞.这是人类首度发现黑洞的两极正以每秒400公里的速度向外喷流物质.左图中央处标示出位於M84星系中心发现此正在喷流的黑洞位置.右图中蓝色的部分是位於黑洞旋转盘面上正被黑洞吸进去而朝向我们而来的云气,红色的部分是旋转盘面上正远离我们而去的云气.
↑模拟黑洞两极喷流的过程: 图1.黑洞强大的重力正吞噬著邻近星球的云气 图2.黑洞所吞噬的物质形成了不稳定的状态 图3.黑洞正进行两极方向的巨观喷流 图4.经过剧烈的喷流后,黑洞又趋於稳定.黑洞持续进行吞噬邻近星球的云气,不久后将会有第二波的喷流产生. 图5.远观黑洞进行一波接著一波南北对称的喷流
四,黑洞和相对论
在这里又谈到爱因斯坦的相对论.本来黑洞并非一定得由大质量的恒星演变而成, 只是一般星体不可能一下子缩到底.所以恒星演变成黑洞只有经由大质量塌缩这一途径.此结论已由相对论导出,至於黑洞与外界断绝关系,我们可以把其形状试想成细长瓶子状.进入瓶子的一切短程线,都只能按弧线落到其底部.因此形成禁锢的空间,任何物体都无法逃出.但这个禁锢空间对外界是开放的,只是进的去出不来而已,也就是它和外界相通只有单向性.这个禁锢空间的内外分界称为「事界」,也就是史瓦西半径的界面,过了这界线,外界就无从得知了.内部的人最远只能到达史瓦西半径界面,亦即事界是他们世界的端点.而史瓦西界面是由史瓦西首先依据相对论所求出的解,后人便称之为史瓦西黑洞.然而其实事界的概念已先於爱因斯坦早存在,但他创见性的两点在於时空弯曲以及光速是一切物体运动的极限.
五,黑洞的利用
物理学家把有序的相反概念,也就是无序状态叫做熵(Entropy). 一个封闭的物质世界系统,无论甚麼物理变化,全熵量即无序的总量绝不减少,这称热力学第二定律.最后熵达到最大而成平衡状态,这就是所谓的热寂,这时到处能量分布相同,宇宙再也活不起来了.没有运动,也就是没有时间,宇宙就不存在了! 引力能的熵比核能以及热运动能的熵小得多,通常引力场绝非无序的.但黑洞把通常共存物体吞噬进去,就使黑洞失去多样性而驱於统一,於是就包含一定的熵,把黑洞引力场转为其他形式就不能百分之百有用.但黑洞有熵是肯定的.若非如此,投入极大量的无序的东西到黑洞中,岂非全体熵减小了.这就和热力学第二定律相违背了.而黑洞的引力能,可看为存於表面,恰如水滴表面张力那样的表面能.如果给水滴补充能量,它就会激烈震动而分裂.因为面积不够容纳更大的能量.同样的,如果对黑洞施以能量,类似的理由它会震动,用引力波放走能量,因为它不能分裂.它的表面积依然和初始界面表面积一样,亦即表面积不能减少,这可称为「不减能」.黑洞一形成,对应的表面积就是永远不可灭.再来谈到若黑洞自转或带电的话,其塌缩星的能量便对应增加.因为各个电场互相排斥,要合成一体必须作功.所以电荷凝缩伴随著电场能量的储存.以后吸收等量反符号电荷,变成中性,就等於把储存的能量放出.事实上,塌缩星的全部能量包含了寄存的电量.而黑洞有不可灭表面能量,自转能量,电场能量三种.自转能和电场能不是以熵的形式寄存的.旋转速度降低,电荷中性化,就可送出能量,所以只有表面能是熵性的. 但要如何获得其能量呢 在这里提供了「弹道法」.它是把物体射入能层,让它分裂为二.一个跌进了事界,一个抛了出来,而跑出的便带走了能层的能量.
六,不同形态的黑洞
在黑洞学的领域裏,科学家认为黑洞在质量的分类只有两种,一种是太阳的数百万至数十亿倍(supermassive type)另外一种是只有太阳的数倍(stellar type),可是现在美国太空总署及Carnegie Mellon 大学却发现了另外一种型态的黑洞,其重量介於一百倍至一万倍之间,这种新发现的黑洞可能普遍存在於螺旋星系裏,其太小却比月亮还小,天文学家称之为中量级(middleweight)黑洞.
天文学家认为其星系中心有一个相当活跃的中量级黑洞,M82曾与M81擦身而过,造成M82内部的星球与星云扰动,这种不寻常的碰撞可能是造成M82星系中心形成中量级黑洞的原因.
新型态的黑洞是经由X-Ray射线的发现而确认,而X-Ray射线是黑洞附近的物质被吸入黑洞之前所散发出来的最后能量,经由X-Ray望远镜的侦测与光谱仪的对照,可以确定黑洞的大小及活跃程度.这种新型态的黑洞很可能是数个轻量级的黑洞联合而成,这些轻量级的黑洞在M82星系裏有数以百万计,因不明原因而合并成较大的中型黑洞.
七,双黑洞系统
当天空中某个天体正踏著醉拳般的步伐晃动时,天文学家就晓得在这醉拳 高手附近应该还有另一个天体正与之对峙.天体之间最重要的作用力 是万有引力,它会使周遭天体的运动轨迹改变.例如,以前的天文学家是先 观测到天王星(Neptune),但是却发现天王星环绕太阳运转的轨道与计算 不合,因而推断天王星之外应该还有另一颗行星,之后,观测者便在天王星轨道 之外又发现了海王星(Uranus).此外,天文学家也利用这种方式来判断 双星系统.
荷兰Leiden天文台的Nico Roos观测天龙座(Draco)的类星体(quasar)1928+738 所发出的喷射流(jet),他发现这条喷射流也有”摇头晃脑〃的现象,可能这种 进动(precession)是由类星体1928+738核心中的双黑洞系统所造成的. 由喷射流摇头晃脑的幅度和频率,天文学家推算出这二个黑洞以周期2.9年 相互绕著运动,并且整个系统应该具有一亿个太阳质量.
以前就有人提出双黑洞系统的构想,而类星体1928+738正好是这个构想 的最好证明.Roos并提出类星体1928+738内双黑洞系统的形成原因,可能 是由二个中心都拥有黑洞的星系相互碰撞合并而成的.许多天文学家都相信 在类星体中或在活跃星系(active galaxy)中,星系合并的情形是常常发生. Roos相信双黑洞系统的相互快速运转,会使得二个黑洞越转越靠近,最后也会 合并成一个黑洞,因此这些双黑洞系统应该都是些短命鬼.

黑洞的形成

天文学家第一次成功的测量到一个小型黑洞的活动情况及其一颗伴随的恒星快速穿过银河系的附近区域的情况。这个黑洞和伴随的恒星在一个圆形轨道上运动,最终会来到我们银河系的外部边缘地区。
在2001年9月的时候,曾经有科学家认为由恒星余烬密集压缩而成的黑洞是从一个恒星群中被排斥出来的。于是,科学家们开始研究银河系中的恒星群。
所发现的这一对双星被大家称为XTE J1118+480,是在2000年由NASA的Rossi X-ray Timing Explorer卫星所发现的。对它的无线电发射情况进行的研究表明,黑洞-恒星结合体同类星体非常相像,只是体积比较小。
这个黑洞从伴邻的恒星处所吞噬来的物质在黑洞的周围形成了一个漩涡状圆盘,从这个圆盘中不断喷射出亚原子粒子,同时发射出无线电波。一般人们都认为,类星体是由黑洞所组成,要比XTE J1118+480的质量大几十亿倍,所发射出的无线电波的强度要比XTE J1118+408强许多倍。
由于这对双星和地球非常接近,所以天文学家可以使用超大基线阵列(一种射电望远镜网络,从美国的夏威夷延伸到了美国处女岛)跟踪黑洞以及伴随的恒星的活动情况。这对天体以每秒145公里的速度移动着。
XTE J1118+480的轨道同太阳系中的球状星群的轨道非常类似,球状星群是银河系中由最古老的恒星所形成的庞大的恒星集团。同银河中大多数的恒星不一样,球状星群不在银河平面上运动,它的运行轨道一会儿高出银河系平面,一会儿低于银河系平面。
这个小黑洞的轨道同XTE J1118+480的轨道非常类似,这说明它在很早的时候曾经受到过很强的作用力,把它从球状星群中或是银河系平面区域上给推了出来。对这个过程进行模拟研究表明,这个黑洞最初的时候可能来自于球状星群,而且黑洞形成的时间要早于银河系的形成时间。这可能就表明,在银河系形成的早期阶段,曾经有一段时期集中地形成了大量的恒星。
回答者:完颜康康 - 榜眼 十三级 11-1 21:10

…………太完美了…………
补充:其实就是质量过大,而引起的空间扭曲!

当一颗质量相当大的星体之核能耗尽(超新星爆发)后,残骸质量比太阳质量高3倍的恒星核心会演化成黑洞(若中子星有伴星,而中子星吸收足够伴星的物质,也能演化成黑洞)。在黑洞内,没有任何向外力能维持与重力平衡,因此,核心会一直塌缩下去,形成黑洞。

当物质掉进了事界,纵使以光速计算,也不能再走出来。

爱因斯坦以几何角度把黑洞解释为空间扭曲的洞,物质随空间而行,如果空间本身就是洞,是没有物质可逃出的。

http://zhidao.baidu.com/question/14608073.html?si=1

  • 鍏充簬榛戞礊鐨璧勬枡
    绛旓細瀵瑰惛绉粦娲炲厜搴鍜鍏夎氨鐨勫垎鏋愪负鏃嬭浆榛戞礊鍜岃鐣岀殑瀛樺湪鎻愪緵浜嗗己鏈夊姏鐨勮瘉鎹傛暟鍊兼ā鎷熶篃鏄剧ず鍚哥Н榛戞礊缁忓父鍑虹幇鐩稿璁哄柗娴佷篃閮ㄥ垎鏄敱榛戞礊鐨鑷浆鎵椹卞姩鐨勩傚ぉ浣撶墿鐞嗗瀹剁敤鈥滃惛绉濊繖涓瘝鏉ユ弿杩扮墿璐ㄥ悜涓ぎ寮曞姏浣撴垨鑰呮槸涓ぎ寤跺睍鐗╄川绯荤粺鐨勬祦鍔ㄣ傚惛绉槸澶╀綋鐗╃悊涓渶鏅亶鐨勮繃绋嬩箣涓锛岃屼笖涔熸鏄洜涓哄惛绉墠褰㈡垚浜嗘垜浠...
  • 浠涔堟槸榛戞礊?瀹冩槸鎬庝箞褰㈡垚鐨?浜虹被绗竴娆℃媿鎽勫埌榛戞礊鏄粈涔堟椂鍊?
    绛旓細榛戞礊鏄竴棰楁亽鏄熺垎鐐稿拰鍧嶅鍚庣殑缁撴灉锛屾湁鐫鏋佸己鐨勫紩鍔涳紝鍗充娇鏄厜涔熶細琚畠鍚歌繘鍘伙紝瀹冪殑妯℃牱鍦2017骞磋绗竴娆℃媿鍒般傞粦娲炴槸浠涔堬細榛戞礊鏄竴棰楁亽鏄熻蛋鍚戠敓鍛界殑灏藉ご鍚庤嚜鐖浜х敓鐨勶紝瀹冧綋绉彲澶у彲灏忥紝绉戝瀹朵滑璁や负鏈灏忕殑榛戞礊鍙湁涓涓師瀛澶у皬锛岃櫧鐒跺畠浠瀬鍏朵箣灏忥紝浣嗘槸璐ㄩ噺鍗村紓甯稿ぇ锛屾渶灏忕殑璐ㄩ噺璧风爜涔熸槸澶槼鐨20鍊...
  • 浜虹被鍙戠幇鏈灏忕殑榛戞礊鏄粈涔,澶氬皯璐ㄩ噺鎵嶄細鍧嶅鎴愰粦娲?
    绛旓細杩欏紶鐓х墖闈炲父鏉ヤ箣涓嶆槗锛岃楄垂浜嗗ぇ閲忕殑浜哄姏锛岀墿鍔浠ュ強璐㈠姏锛岃繖涓垚鏋滅殑鍙戠幇涓嶄粎鍙澶╂枃鐣屽紩璧蜂笉灏忕殑杞板姩锛屽叏涓栫晫閮藉湪涓鸿繖涓鎴愭灉鐨勪骇鐢鑰屾鍛奸泙璺冦傝繖寮榛戞礊鐨鐓х墖锛屼笉浠呬粎鏄竴寮犵収鐗囷紝浠栨洿浠h〃浜嗕汉绫诲鏈煡鐨勫畤瀹欑殑鎺㈢储鍙戠幇鐨勮瘉鏄庯紝鍚屾椂涔熸剰鍛崇潃鐖卞洜鏂潶--杩欎綅鎺ヨ繎绁炰竴鏍风殑绉戝瀹跺張涓娆℃垚鍔熼瑷浜嗛粦娲炶...
  • 榛戞礊鏄笉鏄緢灏?鏄笉鏄細涓嶆柇鍚稿紩鍏朵粬澶╀綋鑰屽澶?
    绛旓細鎵浠ユ垜璁や负榛戞礊鐨勫ぇ灏涓洪粦娲炰箣鍓嶇殑鎭掓槦澶у皬鐨勪竴鍗婁互涓嬨傞粦娲炴槸涓嶄細闅忕潃鍚告敹鍏朵粬鐗╀綋鑰屾浘澶х殑锛岃繖鏄笉鍙兘鐨勶紝榛戞礊鐨勫ぇ灏忎粠浠栬癁鐢熷氨宸茬粡纭畾浜嗙殑銆傜瀛﹀璁$畻澶槼杩樻湁50浜垮勾鍙椿锛屽綋澶槼琛拌佹椂锛屽畠鐨勭儹鏍稿弽搴斿凡缁忚楀敖浜嗕腑蹇冪殑鐕冩枡锛堟阿锛夛紝鐢变腑蹇浜х敓鐨勮兘閲忓凡缁忎笉澶氫簡銆傝繖鏍凤紝瀹冨啀涔熸病鏈夎冻澶熺殑鍔涢噺鏉ユ壙鎷...
  • 瀹囧畽涓殑榛戞礊鏄浣褰㈡垚鐨,瀹冨埌搴曟槸涓粈涔堟牱鐨勫瓨鍦?
    绛旓細绛;瀹囧畽涓殑澶╀綋鏈夎兘澶熷彂鍏夌殑,鏈変笉浼氬彂鍏夌殑,杩樻湁涓绉嶄负鐜颁唬浜轰滑鐢ㄧ溂鐫涙牴鏈棤娉曠湅瑙佺殑鏆楃墿璐ㄦ垨鑰呰鏄绉樼殑澶╀綋,鏃犺鏄粈涔堢墿浣撳彧瑕佹帴杩戣繖涓ぉ浣,渚夸細椹笂娑堝け鐨勬棤褰辨棤韪;杩欏氨鏄洰鍓嶅湴鐞冧笂鐨勫ぉ鏂囧瀹朵滑姝e湪 鎺㈢储 鐮旂┒鐨勨榛戞礊鈥濄 澶╂枃瀛﹀鏍规嵁鐖卞洜鏂潶鐨勫箍涔夌浉瀵硅,瀵归粦娲炲瓨鍦ㄧ殑鏉′欢鍜屽舰鎴鐨勫師鍥犺繘琛屼簡璁稿 鎺㈢储 ...
  • 榛戞礊鎬庢牱褰㈡垚?
    绛旓細闈㈠彂灏勭殑鍏夐兘琚崟鑾蜂簡銆傚埌杩欐椂锛屾亽鏄熷氨鍙樻垚浜榛戞礊銆傝瀹冣滈粦鈥濓紝鏄寚瀹冨氨鍍 瀹囧畽涓殑鏃犲簳娲烇紝浠讳綍鐗╄川涓鏃︽帀杩涘幓锛屸滀技涔庘濆氨鍐嶄笉鑳介冨嚭銆傚疄闄呬笂榛戞礊鐪 姝f槸鈥滈殣褰⑩濈殑锛屼笅闈㈠皢浼氬彊杩般傞粦娲炴槸鎬庢牱褰㈡垚鐨勫憿锛熷叾瀹烇紝璺熺櫧鐭槦鍜屼腑瀛愭槦涓鏍凤紝榛戞礊寰堝彲鑳戒篃鏄敱鎭 鏄熸紨鍖栬屾潵鐨勩傛垜浠浘缁忔瘮杈冭缁嗗湴浠嬬粛浜...
  • 瀹囧畽鐨榛戞礊绛変簬澶氬皬涓お闃
    绛旓細榛戞礊鐨璐ㄩ噺鏋佸叾宸ㄥぇ锛岃屼綋绉嵈鍗佸垎寰皬锛屽畠浜х敓鐨勫紩鍔涘満鏋佷负寮哄姴锛屼互鑷翠簬浠讳綍鐗╄川鍜岃緪灏勫湪杩涘叆鍒伴粦娲炵殑涓涓簨浠惰鐣岋紙涓寸晫鐐癸級鍐咃紝渚垮啀鏃犲姏閫冭劚锛屽氨杩炰紶鎾熷害鏈蹇殑鍏夛紙鐢电娉級涔熼冮镐笉鍑恒傚ぇ鍨嬮粦娲烇紝宸ㄥ瀷榛戞礊瀹囧畽涓ぇ閮ㄥ垎鏄熺郴锛屽寘鎷垜浠眳浣忕殑閾舵渤绯荤殑涓績閮介殣钘忕潃涓涓秴澶ц川閲忛粦娲炪傝繖浜涢粦娲炶川閲澶у皬...
  • 榛戞礊鐨勫舰鎴鍘熷洜?
    绛旓細瀹冨啀涔熸病鏈夎冻澶熺殑鍔涢噺鏉ユ壙鎷呰捣澶栧3宸ㄥぇ鐨勯噸閲忋傛墍浠ュ湪澶栧3鐨勯噸鍘嬩箣涓嬶紝鏍稿績寮濮嬪潔缂╋紝鐗╄川灏嗕笉鍙樆鎸″湴鍚戠潃涓績鐐硅繘鍐涳紝鐩村埌鏈鍚褰㈡垚浣撶Н鎺ヨ繎鏃犻檺灏忋佸瘑搴﹀嚑涔庢棤闄愬ぇ鐨勬槦浣撱傝屽綋瀹冪殑鍗婂緞涓鏃︽敹缂╁埌涓瀹氱▼搴︼紙涓瀹氬皬浜庡彶鐡﹁タ鍗婂緞锛夛紝璐ㄩ噺瀵艰嚧鐨勬椂绌烘壄鏇插氨浣垮緱鍗充娇鍏変篃鏃犳硶鍚戝灏勫嚭鈥斺斺榛戞礊鈥濆氨璇炵敓浜嗐
  • 榛戞礊鏄礊杩樻槸鐞冧綋?瀹冩槸濡備綍鍚炲櫖鐗╄川鐨?
    绛旓細榛戞礊鏄埍鍥犳柉鍧﹀箍涔夌浉瀵硅棰勮█瀛樺湪鐨勪竴绉嶅ぉ浣擄紝瀹冨叿鏈夌殑瓒呭己寮曞姏浣垮緱鍏変篃鏃犳硶閫冭劚瀹冪殑鍔垮姏鑼冨洿锛岃鍔垮姏鑼冨洿绉颁綔榛戞礊鐨勫崐寰勬垨绉颁綔浜嬩欢瑙嗙晫銆榛戞礊鐨勫舰鎴锛氬儚瀹囧畽涓囩墿涓鏍凤紝鎭掓槦涔熶細琛拌佹浜°備竴浜涘ぇ璐ㄩ噺鎭掓槦鍦ㄦ牳鑱氬彉鍙嶅簲鐕冩枡鑰楀敖鏃讹紝鍐呮牳浼氭ュ墽濉岀缉锛屾墍鏈夌墿璐ㄥ揩閫熷悜鐫涓涓偣鍧嶇缉锛屾渶缁堝潔缂╂垚涓棰楅粍璞澶у皬鐨勫鐐癸紝...
  • 扩展阅读:黑洞 白洞 虫洞 灰洞 空洞 ... 世界上最吓人的黑洞 ... 黑洞最吓人的照片 ... 蓝洞能吞掉黑洞吗 ... 第一个掉进黑洞的人 ... 虫洞和黑洞哪个可怕 ... 黑洞吃白洞的视频 ... 白洞vs黑洞vs灰洞vs虫洞 ... 黑洞吃白洞的图片 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网