传感器的定义.分类.作用分别是什么 传感器的定义和分类

\u4f20\u611f\u5668\u7684\u5b9a\u4e49\u3001\u5206\u7c7b\u3001\u4f5c\u7528\u5206\u522b\u662f\u4ec0\u4e48\uff1f

\u4e00\u3001\u5b9a\u4e49\uff1a\u4f20\u611f\u5668\uff08\u82f1\u6587\u540d\u79f0\uff1atransducer/sensor\uff09\u662f\u4e00\u79cd\u68c0\u6d4b\u88c5\u7f6e\uff0c\u80fd\u611f\u53d7\u5230\u88ab\u6d4b\u91cf\u7684\u4fe1\u606f\uff0c\u5e76\u80fd\u5c06\u611f\u53d7\u5230\u7684\u4fe1\u606f\uff0c\u6309\u4e00\u5b9a\u89c4\u5f8b\u53d8\u6362\u6210\u4e3a\u7535\u4fe1\u53f7\u6216\u5176\u4ed6\u6240\u9700\u5f62\u5f0f\u7684\u4fe1\u606f\u8f93\u51fa\uff0c\u4ee5\u6ee1\u8db3\u4fe1\u606f\u7684\u4f20\u8f93\u3001\u5904\u7406\u3001\u5b58\u50a8\u3001\u663e\u793a\u3001\u8bb0\u5f55\u548c\u63a7\u5236\u7b49\u8981\u6c42\u3002
\u4e8c\u3001\u5206\u7c7b\u4f9d\u636e\uff1a
1\u3001\u6309\u7528\u9014\uff1b2\u3001\u6309\u539f\u7406\uff1b
3\u3001\u6309\u8f93\u51fa\u4fe1\u53f7\uff1b
4\u3001\u6309\u5176\u5236\u9020\u5de5\u827a\uff1b
5\u3001\u6309\u6d4b\u91cf\u76ee\uff1b
6\u3001\u6309\u5176\u6784\u6210\uff1b
7\u3001\u6309\u4f5c\u7528\u5f62\u5f0f\u3002
\u4e09\u3001\u4f5c\u7528\uff1a\u4eba\u4eec\u4e3a\u4e86\u4ece\u5916\u754c\u83b7\u53d6\u4fe1\u606f\uff0c\u5fc5\u987b\u501f\u52a9\u4e8e\u611f\u89c9\u5668\u5b98\u3002\u800c\u5355\u9760\u4eba\u4eec\u81ea\u8eab\u7684\u611f\u89c9\u5668\u5b98\uff0c\u5728\u7814\u7a76\u81ea\u7136\u73b0\u8c61\u548c\u89c4\u5f8b\u4ee5\u53ca\u751f\u4ea7\u6d3b\u52a8\u4e2d\u5b83\u4eec\u7684\u529f\u80fd\u5c31\u8fdc\u8fdc\u4e0d\u591f\u4e86\u3002\u4e3a\u9002\u5e94\u8fd9\u79cd\u60c5\u51b5\uff0c\u5c31\u9700\u8981\u4f20\u611f\u5668\u3002\u56e0\u6b64\u53ef\u4ee5\u8bf4\uff0c\u4f20\u611f\u5668\u662f\u4eba\u7c7b\u4e94\u5b98\u7684\u5ef6\u957f\uff0c\u53c8\u79f0\u4e4b\u4e3a\u7535\u4e94\u5b98\u3002 \u65b0\u6280\u672f\u9769\u547d\u7684\u5230\u6765\uff0c\u4e16\u754c\u5f00\u59cb\u8fdb\u5165\u4fe1\u606f\u65f6\u4ee3\u3002\u5728\u5229\u7528\u4fe1\u606f\u7684\u8fc7\u7a0b\u4e2d\uff0c\u9996\u5148\u8981\u89e3\u51b3\u7684\u5c31\u662f\u8981\u83b7\u53d6\u51c6\u786e\u53ef\u9760\u7684\u4fe1\u606f\uff0c\u800c\u4f20\u611f\u5668\u662f\u83b7\u53d6\u81ea\u7136\u548c\u751f\u4ea7\u9886\u57df\u4e2d\u4fe1\u606f\u7684\u4e3b\u8981\u9014\u5f84\u4e0e\u624b\u6bb5\u3002
\u4e00\u3001\u4f20\u611f\u5668\u7684\u7279\u70b9\u5305\u62ec\uff1a\u5fae\u578b\u5316\u3001\u6570\u5b57\u5316\u3001\u667a\u80fd\u5316\u3001\u591a\u529f\u80fd\u5316\u3001\u7cfb\u7edf\u5316\u3001\u7f51\u7edc\u5316\uff0c\u5b83\u4e0d\u4ec5\u4fc3\u8fdb\u4e86\u4f20\u7edf\u4ea7\u4e1a\u7684\u6539\u9020\u548c\u66f4\u65b0\u6362\u4ee3\uff0c\u800c\u4e14\u8fd8\u53ef\u80fd\u5efa\u7acb\u65b0\u578b\u5de5\u4e1a\uff0c\u4ece\u800c\u6210\u4e3a21\u4e16\u7eaa\u65b0\u7684\u7ecf\u6d4e\u589e\u957f\u70b9\u3002\u5fae\u578b\u5316\u662f\u5efa\u7acb\u5728\u5fae\u7535\u5b50\u673a\u68b0\u7cfb\u7edf\uff08MEMS\uff09\u6280\u672f\u57fa\u7840\u4e0a\u7684\uff0c\u5df2\u6210\u529f\u5e94\u7528\u5728\u7845\u5668\u4ef6\u4e0a\u505a\u6210\u7845\u538b\u529b\u4f20\u611f\u5668\u3002
\u4e8c\u3001\u4e0d\u540c\u5206\u7c7b\u4f9d\u636e\u7684\u4f20\u611f\u5668\u4e3e\u4f8b\uff1a
1\u3001\u6309\u7528\u9014\uff1a\u538b\u529b\u654f\u548c\u529b\u654f\u4f20\u611f\u5668\u3001\u4f4d\u7f6e\u4f20\u611f\u5668\u3001\u6db2\u4f4d\u4f20\u611f\u5668\u3001\u80fd\u8017\u4f20\u611f\u5668\u3001\u901f\u5ea6\u4f20\u611f\u5668\u3001\u52a0\u901f\u5ea6\u4f20\u611f\u5668\u3001\u5c04\u7ebf\u8f90\u5c04\u4f20\u611f\u5668\u3001\u70ed\u654f\u4f20\u611f\u5668\u7b49\u3002
2\u3001\u6309\u539f\u7406\uff1a\u632f\u52a8\u4f20\u611f\u5668\u3001\u6e7f\u654f\u4f20\u611f\u5668\u3001\u78c1\u654f\u4f20\u611f\u5668\u3001\u6c14\u654f\u4f20\u611f\u5668\u3001\u771f\u7a7a\u5ea6\u4f20\u611f\u5668\u3001\u751f\u7269\u4f20\u611f\u5668\u7b49\u3002
3\u3001\u6309\u8f93\u51fa\u4fe1\u53f7\uff1a\u6a21\u62df\u4f20\u611f\u5668\u3001\u6570\u5b57\u4f20\u611f\u5668\u3001\u81ba\u6570\u5b57\u4f20\u611f\u5668\u3001\u5f00\u5173\u4f20\u611f\u5668
4\u3001\u6309\u5176\u5236\u9020\u5de5\u827a\uff1a\u96c6\u6210\u4f20\u611f\u5668\u3001\u8584\u819c\u4f20\u611f\u5668\u3001\u539a\u819c\u4f20\u611f\u5668\u3001\u9676\u74f7\u4f20\u611f\u56685\u3001\u6309\u6d4b\u91cf\u76ee\uff1a\u7269\u7406\u578b\u4f20\u611f\u5668\u3001\u5316\u5b66\u578b\u4f20\u611f\u5668\u3001\u751f\u7269\u578b\u4f20\u611f\u5668
6\u3001\u6309\u5176\u6784\u6210\uff1a\u57fa\u672c\u578b\u4f20\u611f\u5668\u3001\u7ec4\u5408\u578b\u4f20\u611f\u5668\u3001\u5e94\u7528\u578b\u4f20\u611f\u5668
7\u3001\u6309\u4f5c\u7528\u5f62\u5f0f\uff1a\u4e3b\u52a8\u578b\u4f20\u611f\u5668\u3001\u88ab\u52a8\u578b\u4f20\u611f\u5668\u3002

\u6bcf\u5929\u6301\u7eed\u66f4\u65b0\u975e\u6807\u8bbe\u8ba1\u673a\u68b0\u89c6\u9891\uff0c\u70b9\u51fb\u5173\u6ce8\u5171\u540c\u5b66\u4e60\uff0c\u4e92\u76f8\u8fdb\u6b65\uff01

一、定义:传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

二、分类依据:

1、按用途;

2、按原理;

3、按输出信号;

4、按其制造工艺;

5、按测量目;

6、按其构成;

7、按作用形式。

三、作用:人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。



传感器
一、传感器(transducer)的定义

国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。

二、传感器的分类

传感器的分类
可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类
传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。

常见传感器的应用领域和工作原理列于表1.1。

按照其用途,传感器可分类为:

压力敏和力敏传感器 �位置传感器

液面传感器 �能耗传感器

速度传感器 �热敏传感器

加速度传感器 �射线辐射传感器

振动传感器� 湿敏传感器

磁敏传感器� 气敏传感器

真空度传感器� 生物传感器等。�

以其输出信号为标准可将传感器分为:

模拟传感器——将被测量的非电学量转换成模拟电信号。�

数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。�

膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。�

开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:

(1)按照其所用材料的类别分�

金属� 聚合物� 陶瓷� 混合物�

(2)按材料的物理性质分� � 导体� 绝缘体� 半导体� 磁性材料�

(3)按材料的晶体结构分�

单晶� 多晶� 非晶材料�

与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:�

(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。�

(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。�

(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。�
现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。表1.2中给出了一些可用于传感器技术的、能够转换能量形式的材料。�

按照其制造工艺,可以将传感器区分为:

集成传感器�薄膜传感器�厚膜传感器�陶瓷传感器
集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。�
薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。�
厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。
陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。�
完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。�
每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。

三、传感器的静态特性

传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。

四、传感器的动态特性

所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

五、传感器的线性度

通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。

拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。

六、传感器的灵敏度

灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。

它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。

灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。

当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。

七、传感器的分辨力

分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。

通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。

八、电阻式传感器

电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。

九、电阻应变式传感器

传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。

十、压阻式传感器

压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。

用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。

十一、热电阻传感器

热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。

十二、传感器的迟滞特性

迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值△MAX与满量程输出F·S的百分比表示。

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
主要分类:
1、按用途:
压力敏和力敏传感器、位置传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器。
2、按原理:
振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。
3、按输出信号:
模拟传感器:将被测量的非电学量转换成模拟电信号。
数字传感器:将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器:将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器:当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
4、按其制造工艺:
集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。 通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。
薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。
厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。
陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶、凝胶等)生产。
完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。
每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。
5、按测量目:
物理型传感器是利用被测量物质的某些物理性质发生明显变化的特性制成的。
化学型传感器是利用能把化学物质的成分、浓度等化学量转化成电学量的敏感元件制成的。
生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器。
6、按其构成:
基本型传感器:是一种最基本的单个变换装置。
组合型传感器:是由不同单个变换装置组合而构成的传感器。
应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。
7、按作用形式:
按作用形式可分为主动型和被动型传感器。
主动型传感器又有作用型和反作用型,此种传感器对被测对象能发出一定探测信号,能检测探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号。检测探测信号变化方式的称为作用型,检测产生响应而形成信号方式的称为反作用型。雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例。
被动型传感器只是接收被测对象本身产生的信号,如红外辐射温度计、红外摄像装置等。
主要作用:
人们为了从外界获取信息,必须借助于感觉器官。 而单靠人们自身的感觉器官,在研究 自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。
传感器新技术革命的到来,世界开始进入 信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。
在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。
在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。
传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。
由此可见, 传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。
主要特点:
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。
主要特性:
1、传感器静态
传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。
2、传感器动态
所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和 频率响应来表示。
3、线性度
通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。
拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。
4、灵敏度
灵敏度是指传感器在稳态工作情况 下输出量变化△y对输入量变化△x的比值。
它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。
当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
5、分辨率
分辨率是指传感器可感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨率时,其输出才会发生变化。
通常传感器在满量程范围内各点的分辨率并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨率的指标。上述指标若用满量程的百分比表示,则称为分辨率。分辨率与传感器的稳定性有负相相关性。

  • 浼犳劅鍣ㄧ殑瀹氫箟銆鍒嗙被銆浣滅敤鍒嗗埆鏄浠涔?
    绛旓細涓銆佸畾涔夛細浼犳劅鍣ㄦ槸涓绉嶈兘澶熸娴嬬壒瀹氱墿鐞嗘垨鍖栧閲忓苟灏嗗叾杞崲涓哄彲璇讳俊鍙风殑璁惧銆傚畠浠兘澶熸劅鐭ュ閮ㄧ幆澧冪殑寰皬鍙樺寲锛屽苟灏嗚繖浜涘彉鍖栬浆鎹负鐢典俊鍙凤紝浠ヤ究浜庢祴閲忓拰鎺у埗銆備簩銆佸垎绫伙細1. 鎸夌敤閫斿垎绫锛氬寘鎷帇鍔涗紶鎰熷櫒銆佷綅缃紶鎰熷櫒銆佹恫浣嶄紶鎰熷櫒銆佽兘鑰椾紶鎰熷櫒绛夈2. 鎸夊伐浣滃師鐞嗗垎绫伙細濡傛尟鍔ㄤ紶鎰熷櫒銆佹箍鏁忎紶鎰熷櫒銆佺鏁忎紶鎰熷櫒绛夈
  • 浼犳劅鍣ㄧ殑瀹氫箟銆鍒嗙被銆浣滅敤鍒嗗埆鏄浠涔?
    绛旓細涓銆佸畾涔夛細浼犳劅鍣紙鑻辨枃鍚嶇О锛transducer/sensor锛夋槸涓绉嶆娴嬭缃紝鑳芥劅鍙楀埌琚祴閲忕殑淇℃伅锛屽苟鑳藉皢鎰熷彈鍒扮殑淇℃伅锛屾寜涓瀹氳寰嬪彉鎹㈡垚涓虹數淇″彿鎴栧叾浠栨墍闇褰㈠紡鐨勪俊鎭緭鍑锛屼互婊¤冻淇℃伅鐨勪紶杈撱佸鐞嗐佸瓨鍌ㄣ佹樉绀恒佽褰曞拰鎺у埗绛夎姹傘備簩銆佸垎绫讳緷鎹細1銆佹寜鐢ㄩ旓紱2銆佹寜鍘熺悊锛3銆佹寜杈撳嚭淇″彿锛4銆鎸夊叾鍒堕犲伐鑹锛5銆...
  • 浼犳劅鍣ㄧ殑姒傚康鍙婄粍鎴,姣忎竴閮ㄥ垎鐨勫姛鑳芥槸浠涔?
    绛旓細浼犳劅鍣ㄦ槸涓绉嶆祴閲忋佹娴嬪拰鐩戞帶鐜涓墿鐞嗛噺锛堝娓╁害銆佸帇鍔涖佹箍搴︺佸厜绾跨瓑锛夌殑瑁呯疆銆傚畠鍙互灏嗚繖浜涚墿鐞嗛噺杞寲涓烘槗浜庤鍙栧拰璁板綍鐨勭數淇″彿锛屽苟浼犺緭璇ヤ俊鍙峰埌鎺ユ敹璁惧鎴栨帶鍒剁郴缁熴傚洜姝わ紝浼犳劅鍣ㄥ湪宸ヤ笟銆佸尰鐤椼佺幆淇濄佸啗浜嬬瓑棰嗗煙鏈夌潃骞挎硾鐨勫簲鐢ㄣ備簩銆佷紶鎰熷櫒鐨勫垎绫 1.鎸夋祴閲忓弬鏁板垎绫锛氬彲鍒嗕负娓╁害浼犳劅鍣ㄣ佸帇鍔涗紶鎰熷櫒銆佹箍...
  • 璇疯皥涓涓浼犳劅鍣ㄧ殑涓昏绉嶇被,宸ヤ綔鍘熺悊鍙婁富瑕佸簲鐢. 澶氳阿
    绛旓細1銆佹寜浼犳劅鍣ㄧ殑鐗╃悊閲忓垎绫伙紝鍙垎涓轰綅绉汇佸姏銆侀熷害銆佹俯搴︺佹祦閲忋佹皵浣撴垚浠界瓑浼犳劅鍣 2銆佹寜浼犳劅鍣ㄥ伐浣滃師鐞嗗垎绫伙紝鍙垎涓虹數闃汇佺數瀹广佺數鎰熴佺數鍘嬨侀湇灏斻佸厜鐢点佸厜鏍呫佺儹鐢靛伓绛変紶鎰熷櫒銆3銆佹寜浼犳劅鍣ㄨ緭鍑轰俊鍙风殑鎬ц川鍒嗙被锛屽彲鍒嗕负锛氳緭鍑轰负寮鍏抽噺锛堚1鈥濆拰"0鈥濇垨鈥滃紑鈥濆拰鈥滃叧鈥濓級鐨勫紑鍏冲瀷浼犳劅鍣紱杈撳嚭涓烘ā鎷熷瀷浼犳劅...
  • 浼犳劅鍣ㄧ殑瀹氫箟鏄浠涔?瀹冧滑鏄浣鍒嗙被鐨?
    绛旓細涓銆佷紶鎰熷櫒鐨勫畾涔 浼犳劅鍣ㄦ槸涓绉嶈兘澶熸劅鍙楅瀹氱殑琚祴閲忥紝骞舵寜鐓т竴瀹氳寰嬪皢鍏惰浆鎹㈡垚鍙敤淇″彿鐨勫櫒浠舵垨瑁呯疆銆傞氬父锛屼紶鎰熷櫒鐢辨晱鎰熷厓浠跺拰杞崲鍏冧欢涓ら儴鍒嗙粍鎴愩備紶鎰熷櫒鐨勪綔鐢ㄦ槸妫娴嬪苟鑾峰彇淇℃伅锛岀劧鍚庡皢杩欎簺淇℃伅杞崲鎴愮數淇″彿鎴栧叾浠栨墍闇褰㈠紡锛屼互渚夸簬淇℃伅鐨勪紶杈撱佸鐞嗐佸瓨鍌ㄣ佹樉绀恒佽褰曞拰鎺у埗銆傚湪鑷姩妫娴嬪拰鑷姩鎺у埗绯荤粺涓...
  • 浼犳劅鍣ㄧ殑鍒嗙被?鍚勭被浼犳劅鍣ㄧ殑宸ヤ綔鍘熺悊浠ュ強瀹為檯搴旂敤?
    绛旓細浼犳劅鍣ㄧ殑瀹氫箟 浼犳劅鍣ㄦ槸涓绉嶈兘鎶婄墿鐞嗛噺鎴栧寲瀛﹂噺杞彉鎴愪究浜庡埄鐢ㄧ殑鐢典俊鍙风殑鍣ㄤ欢銆傚浗闄呯數宸ュ鍛樹細(IEC:International Electrotechnical Committee)鐨勫畾涔変负锛氣滀紶鎰熷櫒鏄祴閲忕郴缁熶腑鐨勪竴绉嶅墠缃儴浠讹紝瀹冨皢杈撳叆鍙橀噺杞崲鎴愬彲渚涙祴閲忕殑淇″彿鈥濄傛寜鐓opel绛夌殑璇存硶鏄細鈥滀紶鎰熷櫒鏄寘鎷壙杞戒綋鍜岀數璺繛鎺ョ殑鏁忔劅鍏冧欢鈥濓紝鑰屸滀紶鎰熷櫒...
  • 浼犳劅鍣ㄧ殑瀹氫箟鍜鐢ㄩ旀槸浠涔
    绛旓細鍥藉鏍囧噯GB7665-87瀵浼犳劅鍣涓鐨勫畾涔夋槸锛氣滆兘鎰熷彈瑙勫畾鐨勮娴嬮噺浠跺苟鎸夌収涓瀹氱殑瑙勫緥杞崲鎴愬彲鐢ㄤ俊鍙风殑鍣ㄤ欢鎴栬缃紝閫氬父鐢辨晱鎰熷厓浠跺拰杞崲鍏冧欢缁勬垚鈥濄傛牴鎹紶鎰熷櫒宸ヤ綔鍘熺悊锛屽彲鍒嗕负鐗╃悊浼犳劅鍣ㄥ拰鍖栧浼犳劅鍣ㄤ簩澶х被锛1.浼犳劅鍣ㄦ寜鐓у叾鐢ㄩ斿垎绫 鍘嬪姏鏁忓拰鍔涙晱浼犳劅鍣ㄤ綅缃紶鎰熷櫒 娑查潰浼犳劅鍣ㄨ兘鑰椾紶鎰熷櫒 閫熷害浼犳劅鍣ㄥ姞閫熷害浼犳劅鍣 ...
  • 浼犳劅鍣ㄦ槸浠涔堟湁浠涔堢敤
    绛旓細浼犳劅鍣ㄨ緭鍑轰俊鍙锋湁寰堝褰㈠紡锛屽鐢靛帇銆佺數娴併侀鐜囥佽剦鍐茬瓑锛岃緭鍑轰俊鍙风殑褰㈠紡鐢浼犳劅鍣ㄧ殑鍘熺悊纭畾锛岃繖涓姒傚康鍖呭惈涓嬮潰鍑犱釜鏂归潰鐨勫惈涔夛細鈶犱紶鎰熷櫒鏄祴閲忚缃紝鑳藉畬鎴愪俊鍙疯幏鍙栦换鍔°傗憽杈撳叆閲忔槸鏌愪竴琚祴閲忥紝鍙兘鏄墿鐞嗛噺锛屼篃鍙兘鏄寲瀛﹂噺銆佺敓鐗╅噺绛夈傗憿杈撳嚭閲忔槸鏌愮鐗╃悊閲忥紝杩欑閲忚渚夸簬浼犺緭銆佽浆鎹佸鐞嗐佹樉绀虹瓑锛...
  • 浼犳劅鍣鏈夊摢浜鍒嗙被?
    绛旓細浜屻佷紶鎰熷櫒鐨勫垎绫 1. 鎸夋娴嬬殑鐗╃悊閲忓垎绫锛屼紶鎰熷櫒鍙互鍒嗕负浣嶇Щ浼犳劅鍣ㄣ佸姏浼犳劅鍣ㄣ侀熷害浼犳劅鍣ㄣ佹俯搴︿紶鎰熷櫒鍜屾祦閲忎紶鎰熷櫒绛夈2. 鎸夊伐浣滃師鐞嗗垎绫锛屼紶鎰熷櫒鍖呮嫭鐢甸樆浼犳劅鍣ㄣ佺數瀹逛紶鎰熷櫒銆佺數鎰熶紶鎰熷櫒銆佺數鍘嬩紶鎰熷櫒銆侀湇灏斾紶鎰熷櫒銆佸厜鐢典紶鎰熷櫒銆佸厜鏍呬紶鎰熷櫒鍜岀儹鐢靛伓浼犳劅鍣ㄧ瓑銆3. 鎸夎緭鍑轰俊鍙鐨勬ц川鍒嗙被锛屼紶鎰熷櫒鍙互鍒嗕负寮鍏冲瀷銆...
  • 浼犳劅鍣ㄧ殑瀹氫箟鍜鍒嗙被
    绛旓細1. 浼犳劅鍣ㄦ槸涓绉嶈澶囥佹ā鍧楁垨瀛愮郴缁燂紝鍏跺熀鏈姛鑳芥槸妫娴嬬幆澧冧腑鐨勪簨浠舵垨鍙樺寲锛屽苟灏嗕俊鎭紶杈撶粰鍏朵粬鐢靛瓙璁惧锛岄氬父鏄绠楁満澶勭悊鍣ㄣ2. 浼犳劅鍣ㄦ槸涓绉嶆娴嬭缃紝鑳藉鎰熷彈鍒拌娴嬮噺鐨勪俊鎭紝骞惰兘鎸夌収涓瀹氳寰嬪皢杩欎簺淇℃伅杞崲鎴愮數淇″彿鎴栧叾浠栨墍闇褰㈠紡鐨勪俊鎭緭鍑恒傝繖鏍风殑杞崲鏄负浜嗘弧瓒充俊鎭殑浼犺緭銆佸鐞嗐佸瓨鍌ㄣ佹樉绀恒...
  • 扩展阅读:传感器的主要作用 ... 传感器是如何分类的 ... 传感器的定义及作用 ... 十种常见传感器 ... 传感器定义及分类 ... 传感器的组成及作用 ... 传感器通常由 和 组成 ... 传感器定义国家标准 ... 传感器的定义组成和分类 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网