三角函数常用公式 三角函数所有的公式

\u4e09\u89d2\u51fd\u6570\u516c\u5f0f\u5927\u5168

\u4e09\u89d2\u51fd\u6570\u516c\u5f0f\u6709\u79ef\u5316\u548c\u5dee\u516c\u5f0f\u3001\u548c\u5dee\u5316\u79ef\u516c\u5f0f\u3001\u4e09\u500d\u89d2\u516c\u5f0f\u3001\u6b63\u5f26\u4e8c\u500d\u89d2\u516c\u5f0f\u3001\u4f59\u5f26\u4e8c\u500d\u89d2\u516c\u5f0f\u3001\u4f59\u5f26\u5b9a\u7406\u7b49\u30021\u79ef\u5316\u548c\u5dee\u516c\u5f0f\u3002sin\u03b1\u00b7cos\u03b2=(1/2)*[sin(\u03b1+\u03b2)+sin(\u03b1-\u03b2)]\uff1bcos\u03b1\u00b7sin\u03b2=(1/2)*[sin(\u03b1+\u03b2)-sin(\u03b1-\u03b2)];cos\u03b1\u00b7cos\u03b2=(1/2)*[cos(\u03b1+\u03b2)+cos(\u03b1-\u03b2)];sin\u03b1\u00b7sin\u03b2=-(1/2)*[cos(\u03b1+\u03b2)-cos(\u03b1-\u03b2)]2\u3001\u548c\u5dee\u5316\u79ef\u516c\u5f0f\u3002sin\u03b1+sin\u03b2=2sin[(\u03b1+\u03b2)/2]\u00b7cos[(\u03b1-\u03b2)/2];sin\u03b1-sin\u03b2=2cos[(\u03b1+\u03b2)/2]\u00b7sin[(\u03b1-\u03b2)/2]cos\u03b1+cos\u03b2=2cos[(\u03b1+\u03b2)/2]\u00b7cos[(\u03b1-\u03b2)/2];cos\u03b1-cos\u03b2=-2sin[(\u03b1+\u03b2)/2]\u00b7sin[(\u03b1-\u03b2)/2]3\u4e09\u500d\u89d2\u516c\u5f0f\u3002sin3\u03b1=3sin\u03b1-4sin^3\u03b1\uff1acos3\u03b1=4cos^3\u03b1-3cos\u03b14\u4e24\u89d2\u548c\u4e0e\u5dee\u7684\u4e09\u89d2\u51fd\u6570\u5173\u7cfbsin(\u03b1+\u03b2)=sin\u03b1cos\u03b2+cos\u03b1sin\u03b2;sin(\u03b1-\u03b2)=sin\u03b1cos\u03b2-cos\u03b1sin\u03b2;cos(\u03b1+\u03b2)=cos\u03b1cos\u03b2-sin\u03b1sin\u03b2;cos(\u03b1-\u03b2)=cos\u03b1cos\u03b2+sin\u03b1sin\u03b2;tan(\u03b1+\u03b2)=(tan\u03b1+tan\u03b2)/(1-tan\u03b1\u00b7tan\u03b2);tan(\u03b1-\u03b2)=(tan\u03b1-tan\u03b2)/(1+tan\u03b1\u00b7tan\u03b2)

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)=sinα k∈z   cos(2kπ+α)=cosα k∈z   tan(2kπ+α)=tanα k∈z   cot(2kπ+α)=cotα k∈z   sec(2kπ+α)=secα k∈z   csc(2kπ+α)=cscα k∈z   公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)=-sinα k∈z   cos(π+α)=-cosα k∈z   tan(π+α)=tanα k∈z   cot(π+α)=cotα k∈z   sec(π+α)=-secα k∈z   csc(π+α)=-cscα k∈z   公式三: 任意角α与 -α的三角函数值之间的关系:   sin(-α)=-sinα   cos(-α)=cosα   tan(-α)=-tanα   cot(-α)=-cotα   sec(-α)=secα   csc(-α)=-cscα   公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)=sinα   cos(π-α)=-cosα   tan(π-α)=-tanα   cot(π-α)=-cotα   sec(π-α)=-secα   csc(π-α)=cscα   公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)=-sinα   cos(2π-α)=cosα   tan(2π-α)=-tanα   cot(2π-α)=-cotα   sec(2π-α)=secα   csc(2π-α)=-cscα   公式六: π/2±α与α的三角函数值之间的关系:   sin(π/2+α)=cosα   cos(π/2+α)=-sinα   tan(π/2+α)=-cotα   cot(π/2+α)=-tanα   sec(π/2+α)=-cscα   csc(π/2+α)=secα   sin(π/2-α)=cosα   cos(π/2-α)=sinα   tan(π/2-α)=cotα   cot(π/2-α)=tanα   sec(π/2-α)=cscα   csc(π/2-α)=secα   推算公式:3π/2±α与α的三角函数值之间的关系:   sin(3π/2+α)=-cosα   cos(3π/2+α)=sinα   tan(3π/2+α)=-cotα   cot(3π/2+α)=-tanα   sec(3π/2+α)=cscα   csc(3π/2+α)=-secα   sin(3π/2-α)=-cosα   cos(3π/2-α)=-sinα   tan(3π/2-α)=cotα   cot(3π/2-α)=tanα   sec(3π/2-α)=-cscα   csc(3π/2-α)=-secα[1]   诱导公式记忆口诀:“奇变偶不变,符号看象限”。    “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。    符号判断口诀:   “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。   “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。

同角三角函数的基本关系
  倒数关系:   tanα ·cotα=1   sinα ·cscα=1   cosα ·secα=1    商的关系:    sinα/cosα=tanα=secα/cscα   cosα/sinα=cotα=cscα/secα   平方关系:   sin^2(α)+cos^2(α)=1   1+tan^2(α)=sec^2(α)   1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
  sin^2(α)+cos^2(α)=1   tan α *cot α=1
一个特殊公式
  (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)   证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]   =sin(a+θ)*sin(a-θ)
坡度公式
  我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,   即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作   a(叫做坡角),那么 i=h/l=tan a.
锐角三角函数公式
  正弦: sin α=∠α的对边/∠α 的斜边   余弦:cos α=∠α的邻边/∠α的斜边   正切:tan α=∠α的对边/∠α的邻边   余切:cot α=∠α的邻边/∠α的对边
二倍角公式
  正弦   sin2A=2sinA·cosA   余弦   1.Cos2a=Cos^2(a)-Sin^2(a)   2.Cos2a=1-2Sin^2(a)   3.Cos2a=2Cos^2(a)-1   即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)   正切   tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
  
sin3α=4sinα·sin(π/3+α)sin(π/3-α)   cos3α=4cosα·cos(π/3+α)cos(π/3-α)   tan3a = tan a · tan(π/3+a)· tan(π/3-a)   三倍角公式推导    sin(3a)   =sin(a+2a)   =sin2acosa+cos2asina   =2sina(1-sin²a)+(1-2sin²a)sina   =3sina-4sin^3a   cos3a   =cos(2a+a)   =cos2acosa-sin2asina   =(2cos²a-1)cosa-2(1-cos^a)cosa   =4cos^3a-3cosa   sin3a=3sina-4sin^3a   =4sina(3/4-sin²a)   =4sina[(√3/2)²-sin²a]   =4sina(sin²60°-sin²a)   =4sina(sin60°+sina)(sin60°-sina)   =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]   =4sinasin(60°+a)sin(60°-a)   cos3a=4cos^3a-3cosa   =4cosa(cos²a-3/4)   =4cosa[cos²a-(√3/2)^2]   =4cosa(cos²a-cos²30°)   =4cosa(cosa+cos30°)(cosa-cos30°)   =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}   =-4cosasin(a+30°)sin(a-30°)   =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]   =-4cosacos(60°-a)[-cos(60°+a)]   =4cosacos(60°-a)cos(60°+a)   上述两式相比可得   tan3a=tanatan(60°-a)tan(60°+a)   现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。包括一些图像问题和函数问题中
三倍角公式
  sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)
半角公式
  sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
万能公式
  sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]
其他
  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式
  sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式
  sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式
  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式
  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式
  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式
  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式
  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
N倍角公式
  根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... =>比较两边的实部与虚部 实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数n, 1. cos(nθ): 公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。 2. sin(nθ): (1)当n是奇数时: 公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。 (2)当n是偶数时: 公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。 (例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
半角公式
  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);   cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.   sin^2(a/2)=(1-cos(a))/2   cos^2(a/2)=(1+cos(a))/2   tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]   
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]   cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]   cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]   tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)   tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)   tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)   cos(α+β)=cosαcosβ-sinαsinβ   cos(α-β)=cosαcosβ+sinαsinβ   sin(α+β)=sinαcosβ+cosαsinβ   sin(α-β)=sinαcosβ -cosαsinβ
积化和差
  sinαsinβ =-[cos(α+β)-cos(α-β)] /2   cosαcosβ = [cos(α+β)+cos(α-β)]/2   sinαcosβ = [sin(α+β)+sin(α-β)]/2   cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
  sh a = [e^a-e^(-a)]/2   ch a = [e^a+e^(-a)]/2   th a = sin h(a)/cos h(a)   公式一:   设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)= sinα   cos(2kπ+α)= cosα   tan(2kπ+α)= tanα   cot(2kπ+α)= cotα   公式二:   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)= -sinα   cos(π+α)= -cosα   tan(π+α)= tanα   cot(π+α)= cotα   公式三:   任意角α与 -α的三角函数值之间的关系:   sin(-α)= -sinα   cos(-α)= cosα   tan(-α)= -tanα   cot(-α)= -cotα   公式四:   利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)= sinα   cos(π-α)= -cosα   tan(π-α)= -tanα   cot(π-α)= -cotα   公式五:   利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)= -sinα   cos(2π-α)= cosα   tan(2π-α)= -tanα   cot(2π-α)= -cotα   公式六:   π/2±α及3π/2±α与α的三角函数值之间的关系:   sin(π/2+α)= cosα   cos(π/2+α)= -sinα   tan(π/2+α)= -cotα   cot(π/2+α)= -tanα   sin(π/2-α)= cosα   cos(π/2-α)= sinα   tan(π/2-α)= cotα   cot(π/2-α)= tanα   sin(3π/2+α)= -cosα   cos(3π/2+α)= sinα   tan(3π/2+α)= -cotα   cot(3π/2+α)= -tanα   sin(3π/2-α)= -cosα   cos(3π/2-α)= -sinα   tan(3π/2-α)= cotα   cot(3π/2-α)= tanα   (以上k∈Z)   A·sin(ωt+θ)+ B·sin(ωt+φ) =   √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }   √表示根号,包括{……}中的内容
三角函数的诱导公式(六公式)
  公式一 sin(-α) = -sinα   cos(-α) = cosα   tan (-α)=-tanα   公式二sin(π/2-α) = cosα   cos(π/2-α) = sinα   公式三 sin(π/2+α) = cosα   cos(π/2+α) = -sinα   公式四sin(π-α) = sinα   cos(π-α) = -cosα   公式五sin(π+α) = -sinα   cos(π+α) = -cosα   公式六tanA= sinA/cosA   tan(π/2+α)=-cotα   tan(π/2-α)=cotα   tan(π-α)=-tanα   tan(π+α)=tanα   诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
  sinα=2tan(α/2)/[1+(tan(α/2))²]   cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]   tanα=2tan(α/2)/[1-(tan(α/2))²]   
其它公式
  
(1) (sinα)^2+(cosα)^2=1(平方和公式)   (2)1+(tanα)^2=(secα)^2   (3)1+(cotα)^2=(cscα)^2   证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可   (4)对于任意非直角三角形,总有   tanA+tanB+tanC=tanAtanBtanC   证:   A+B=π-C   tan(A+B)=tan(π-C)   (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)   整理可得   tanA+tanB+tanC=tanAtanBtanC   得证   同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立   由tanA+tanB+tanC=tanAtanBtanC可得出以下结论   (5)cotAcotB+cotAcotC+cotBcotC=1   (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)   (7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC   (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC   其他非重点三角函数    csc(a) = 1/sin(a)   sec(a) = 1/cos(a)   (seca)^2+(csca)^2=(seca)^2(csca)^2   幂级数展开式   sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞<x<∞)   cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)   arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)   arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)   arctan x = x - x^3/3 + x^5/5 -……(x≤1)   无限公式   sinx=x(1-x^2/π^2)(1-x^2/4π^2)(1-x^2/9π^2)……   cosx=(1-4x^2/π^2)(1-4x^2/9π^2)(1-4x^2/25π^2)……   tanx=8x[1/(π^2-4x^2)+1/(9π^2-4x^2)+1/(25π^2-4x^2)+……]   secx=4π[1/(π^2-4x^2)-1/(9π^2-4x^2)+1/(25π^2-4x^2)-+……]   (sinx)x=cosx/2cosx/4cosx/8……   (1/4)tanπ/4+(1/8)tanπ/8+(1/16)tanπ/16+……=1/π   arctan x = x - x^3/3 + x^5/5 -……(x≤1)   和自变量数列求和有关的公式   sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)   cosx+cos2x+cos3x+……+cosnx=[cos((n+1)x/2sin(nx/2)]/sin(x/2)   tan((n+1)x/2)=(sinx+sin2x+sin3x+……+sinnx)/(cosx+cos2x+cos3x+……+cosnx)   sinx+sin3x+sin5x+……+sin(2n-1)x=(sinnx)^2/sinx   cosx+cos3x+cos5x+……+cos(2n-1)x=sin(2nx)/(2sinx)
编辑本段内容规律
  三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。   1.三角函数本质:   
[1] 根据右图,有   sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。   深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导   sin(A+B) = sinAcosB+cosAsinB 为例:   推导:   首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。   A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))   OA'=OA=OB=OD=1,D(1,0)   ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2   和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)   单位圆定义   单位圆   六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是:   图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。   两角和公式   
sin(A+B) = sinAcosB+cosAsinB   sin(A-B) = sinAcosB-cosAsinB   cos(A+B) = cosAcosB-sinAsinB   cos(A-B) = cosAcosB+sinAsinB   tan(A+B) = (tanA+tanB)/(1-tanAtanB)   tan(A-B) = (tanA-tanB)/(1+tanAtanB)   cot(A+B) = (cotAcotB-1)/(cotB+cotA)   cot(A-B) = (cotAcotB+1)/(cotB-cotA)

  • 涓夎鍑芥暟鍏紡澶у叏,瑕佸叏閮ㄧ殑
    绛旓細1銆丼in2A=2SinA*CosA 2銆丆os2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 3銆tan2A=锛2tanA锛/锛1-tanA^2锛锛堟敞锛歋inA^2 鏄痵inA鐨勫钩鏂 sin2锛圓锛 锛変簩銆侀檷骞傚叕寮 1銆乻in^2(伪)=(1-cos(2伪))/2=versin(2伪)/2 2銆2cos^2(伪)=(1+cos(2伪))/2=covers(2伪)/2 3銆乼an^2...
  • 涓夎鍑芥暟鍏紡
    绛旓細1銆佸叕寮忎竴锛氳伪涓轰换鎰忚锛岀粓杈圭浉鍚岀殑瑙掔殑鍚屼竴涓夎鍑芥暟鐨勫肩浉绛 sin(2k蟺+伪)=sin伪(k鈭圸)cos(2k蟺+伪)=cos伪(k鈭圸)tan(2k蟺+伪)=tan伪(k鈭圸)cot(2k蟺+伪)=cot伪(k鈭圸)2銆佸叕寮忎簩锛氳伪涓轰换鎰忚锛屜+伪鐨勪笁瑙掑嚱鏁板间笌伪鐨勪笁瑙掑嚱鏁板间箣闂寸殑鍏崇郴 sin(蟺+伪)=锛峴in伪 cos(蟺+伪...
  • 涓夎鍑芥暟鍏紡澶у叏
    绛旓細涓夎鍑芥暟鍏紡鏈夌Н鍖栧拰宸叕寮忋佸拰宸寲绉叕寮忋佷笁鍊嶈鍏紡銆佹寮︿簩鍊嶈鍏紡銆佷綑寮︿簩鍊嶈鍏紡銆佷綑寮﹀畾鐞嗙瓑銆1绉寲鍜屽樊鍏紡銆俿in伪路cos尾=(1/2)*[sin(伪+尾)+sin(伪-尾)]锛沜os伪路sin尾=(1/2)*[sin(伪+尾)-sin(伪-尾)];cos伪路cos尾=(1/2)*[cos(伪+尾)+cos(伪-尾)];sin伪路...
  • 涓夎鍑芥暟sin,cos,tan鐨鍏紡鍒嗗埆鏄粈涔?
    绛旓細sin鐨勫钩鏂广乧os鐨勫钩鏂广 tan鐨勫钩鏂 鐨勫叕寮忔槸锛1銆乻in²伪+cos²伪=1 2銆1+tan²伪=sec²伪 3銆1+cot²伪=csc²伪 4銆乻in²伪=(1-cos2a)/2 5銆乧os²a=(1+cos2a)/2 6銆乼an²a=(2tana-1)/(tan2a)...
  • 涓夎鍑芥暟鍏紡鏄粈涔?
    绛旓細鍙嶄笁瑙掑嚱鏁板叕寮 1銆乤rcsin锛-x锛=-arcsinx銆2銆乤rccos锛-x锛=蟺-arccosx銆3銆乤rctan锛-x锛=-arctanx銆4銆乤rccot锛-x锛=蟺-arccotx銆5銆乤rcsinx+arccosx=蟺/2=arctanx+arccotx銆6銆乻in锛坅rcsinx锛=x=cos锛坅rccosx锛=tan锛坅rctanx锛=cot锛坅rccotx锛夈7銆佸綋x鈭堛斺斚/2锛屜/2銆曟椂锛...
  • 涓夎鍑芥暟鐨勫叏閮鍏紡
    绛旓細閿愯涓夎鍑芥暟鍏紡 姝e鸡锛 sin 伪=鈭犖辩殑瀵硅竟/鈭犖 鐨勬枩杈 浣欏鸡锛歝os 伪=鈭犖辩殑閭昏竟/鈭犖辩殑鏂滆竟 姝e垏锛歵an 伪=鈭犖辩殑瀵硅竟/鈭犖辩殑閭昏竟 浣欏垏锛歝ot 伪=鈭犖辩殑閭昏竟/鈭犖辩殑瀵硅竟 浜屽嶈鍏紡 姝e鸡 sin2A=2sinA路cosA 浣欏鸡 1.Cos2a=Cos^2(a)-Sin^2(a)2.Cos2a=1-2Sin^2(a)3.Cos2a=2...
  • 甯哥敤涓夎鍑芥暟鍏紡鏄粈涔?
    绛旓細甯哥敤涓夎鍑芥暟鍏紡濡備笅锛氾紙^琛ㄧず涔樻柟锛屼緥濡傦季2琛ㄧず骞虫柟锛夈傛寮﹀嚱鏁皊in胃锛漼/r銆備綑寮﹀嚱鏁癱os胃锛漻/r銆傛鍒囧嚱鏁皌an胃锛漼/x銆備綑鍒囧嚱鏁癱ot胃锛漻/y銆傛鍓插嚱鏁皊ec胃锛漴/x銆備綑鍓插嚱鏁癱sc胃锛漴/y銆備笁瑙掑嚱鏁板叕寮忕户娉曪細1銆佲滃鍙樺伓涓嶅彉锛岀鍙风湅璞¢檺鈥濓細鈥滃銆佸伓鈥濇寚鐨勬槸蟺锛2鐨勫嶆暟鐨勫鍋讹紝鈥滃彉涓庝笉鍙...
  • 澶у涓夎鍑芥暟鍏紡
    绛旓細1.鍏紡1锛氳伪涓轰换鎰忚锛岀粓杈圭浉鍚岀殑瑙掔殑鍚屼竴涓夎鍑芥暟鐨勫肩浉绛 2.鍏紡浜岋細璁疚变负浠绘剰瑙掞紝蟺+伪鐨勪笁瑙掑嚱鏁板间笌伪鐨勪笁瑙掑嚱鏁板间箣闂寸殑鍏崇郴sin(蟺+伪) 锛 锛峴in伪锛宑os(蟺+伪)锛濓紞cos伪锛宼an(蟺+伪)锛 tan伪 锛宑ot(蟺+伪)锛漜ot伪 3.鍏紡涓夛細浠绘剰瑙捨变笌-伪鐨勪笁瑙掑嚱鏁板间箣闂寸殑鍏崇郴...
  • 涓夎鍑芥暟鍏紡 楂樹腑鎵鏈夌殑
    绛旓細5銆乼an(A+B) = (tanA+tanB)/(1-tanAtanB)锛6銆乼an(A-B) = (tanA-tanB)/(1+tanAtanB)锛7銆乧ot(A+B) = (cotAcotB-1)/(cotB+cotA)锛8銆乧ot(A-B) = (cotAcotB+1)/(cotB-cotA)銆涓夎鍑芥暟搴旂敤锛氫笁瑙掑嚱鏁颁竴鑸敤浜庤绠椾笁瑙掑舰涓湭鐭ラ暱搴︾殑杈瑰拰鏈煡鐨勮搴︼紝鍦ㄥ鑸佸伐绋嬪浠ュ強鐗╃悊瀛...
  • 涓夎鍑芥暟鐨勮繍绠楁硶鍒!!
    绛旓細涓夎鍑芥暟甯哥敤鍏紡锛氾紙^琛ㄧず涔樻柟锛屼緥濡俕2琛ㄧず骞虫柟锛夋寮﹀嚱鏁 sin胃=y/r 浣欏鸡鍑芥暟 cos胃=x/r 姝e垏鍑芥暟 tan胃=y/x 浣欏垏鍑芥暟 cot胃=x/y 姝e壊鍑芥暟 sec胃=r/x 浣欏壊鍑芥暟 csc胃=r/y 浠ュ強涓や釜涓嶅父鐢紝宸茶秼浜庤娣樻卑鐨勫嚱鏁帮細姝g煝鍑芥暟 versin胃 =1-cos胃 浣欑煝鍑芥暟 vercos胃 =1-sin胃 鍚岃涓夎...
  • 扩展阅读:三角函数值表图 ... 一张图看懂三角函数 ... 30 45 60 三角函数表 ... 三角函数值全部对照表 ... 三角函数对照图 ... cos三角函数公式大全 ... sin tan cos三角函数表 ... 三角函数必背公式 ... 三角函数公式口诀表图 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网