已知数列{an}的前n项的和为Sn,且a1=1,na(n+1)=(n+2)Sn,n属于N*.求证数列{Sn/n}为等比数列

\u5df2\u77e5\u6570\u5217{an}\u7684\u524dn\u9879\u548c\u4f1fSn\uff0c\u4e14a1=1\uff0cna\uff08n+1\uff09=\uff08n+2\uff09Sn\uff0cn\u5c5e\u4e8eN* \u6c42\u8bc1\u6570\u5217{Sn/n}\u4e3a\u7b49\u6bd4\u6570\u5217

1\uff09 \u8bc1\u660e\uff1a
na[n+1] = (n+2)S[n]
n(S[n+1]-S[n]) = (n+2)S[n]
nS[n+1] = 2(n+1)S[n]
S[n+1]/(n+1) = 2*S[n]/n, (\u9996\u9879=S[1]/1=a[1]/1=1)
\u6240\u4ee5\uff1a{S[n]/n}\u662f\u4ee51\u4e3a\u9996\u9879,\u516c\u6bd4\u4e3a2\u7684\u7b49\u6bd4\u6570\u5217
2\uff09 \u89e3\uff1a
S[n]/n = 1 * 2^(n-1)
S[n] = n*2^(n-1)
a[n] = S[n]-S[n-1] = n*2^(n-1) - (n-1)*2^(n-2)
= (2n-(n-1))* 2^(n-2) = (n+1)*2^(n-2)
3) \u770b\u4e0d\u61c2 \u52a0\u51e0\u4e2a\u62ec\u53f7\u4f1a\u6b7b\u554a

\u8bc1\u660e\uff1a\u7531\u5df2\u77e5\u5f97\uff1an(S(n+1)-Sn)=(n+2)Sn\uff0c\u5373S(n+1)/(n+1)=2*Sn/n,\u6240\u4ee5\u6570\u5217Sn/n\u662f\u7b49\u6bd4\u6570\u5217\uff0c\u6240\u4ee5Sn=n*2^(n-1) \uff0cTn=1*2^0+2*2^1+3*2^2+...+n*2^(n-1) \uff0c 2Tn=\u3002\u3002\u3002\u76f8\u51cf\u53ef\u5f97\uff1aTn=(n-1)*2^n+1

1. na(n+1)=n[S(n+1)-Sn]=(n+2)Sn
nS(n+1)=2(n+1)Sn
S(n+1)/(n+1)=2*Sn/n
所以{Sn/n}是公比为2的等比数列
2. S1/1=a1=1
所以Sn/n=2^(n-1)
Sn=n*2^(n-1)
所以na(n+1)=(n+2)*n*2^(n-1)
a(n+1)=(n+2)*2^(n-1)
an=(n+1)*2^(n-2)
3. b(n+1)/(n+1)=[bn+n*2^(n-1)]/n
所以
b(n+1)/(n+1)-bn/n=2^(n-1)
bn/n-b(n-1)/(n-1)=2^(n-2)
....
b2/2-b1=2^0=1
叠加 b(n+1)/(n+1)-b1=1+2+2^2+...+2^(n-1)=2^n-1
b(n+1)=(n+1)(2^n-1)
故bn=n*2^(n-1)-n
希望能帮到你,祝学习进步O(∩_∩)O

1. na(n+1)=n[S(n+1)-Sn]=(n+2)Sn
nS(n+1)=2(n+1)Sn
S(n+1)/(n+1)=2*Sn/n
所以{Sn/n}是公比为2的等比数列
2. S1/1=a1=1
所以Sn/n=2^(n-1)
Sn=n*2^(n-1)
所以na(n+1)=(n+2)*n*2^(n-1)
a(n+1)=(n+2)*2^(n-1)
an=(n+1)*2^(n-2)
3. b(n+1)/(n+1)=[bn+n*2^(n-1)]/n
所以
b(n+1)/(n+1)-bn/n=2^(n-1)
bn/n-b(n-1)/(n-1)=2^(n-2)
....
b2/2-b1=2^0=1
叠加 b(n+1)/(n+1)-b1=1+2+2^2+...+2^(n-1)=2^n-1
b(n+1)=(n+1)(2^n-1)
故bn=n*2^(n-1)-n

na(n+1)=n[s(n+1)-s(n)]=(n+2)s(n),
ns(n+1)=2(n+1)s(n),
s(n+1)/(n+1)=2s(n)/n,
s(n+1)/[(n+1)2^(n+1)] = s(n)/[n*2^n] = ... = s(1)/[1*2] = a(1)/2 = 1/2.
s(n)=(1/2)n2^n=n*2^(n-1).
s(n)/n = 2^(n-1)
{s(n)/n}是首项为1, 公比为2的等比数列.
na(n+1)=(n+2)s(n)=(n+2)*n*2^(n-1),
a(n+1)=(n+2)*2^(n-1),
a(n)=(n+1)2^(n-2).
b(n+1)/(n+1)=[b(n)+s(n)]/n=b(n)/n + 2^(n-1),
c(n)=b(n)/n,
c(n+1)=c(n)+2^(n-1),
c(n+1)/2^n = (1/2)c(n)/2^(n-1) + (1/2),
c(n+1)/2^n - 1 = (1/2)c(n)/2^(n-1) - 1/2 = (1/2)[c(n)/2^(n-1) - 1]
{c(n)/2^(n-1) - 1}是首项为c(1)-1=b(1)-1=-1/2,公比为(1/2)的等比数列。
c(n)/2^(n-1) - 1 = (-1/2)(1/2)^(n-1) = -1/2^n,
c(n) = 2^(n-1) - 1/2 = b(n)/n,
b(n) = n[2^(n-1) - 1/2]

  • 宸茬煡鏁板垪an鐨勫墠n椤瑰拰涓sn,a1=1,an+1=an+1/2,鍒檚2019/2019鐨勫间负
    绛旓細鏄撶煡褰搉鈮2鏃,an=Sn - S(n-1)=2鐨刵娆″箓 -1 - (2鐨刵-1娆″箓 -1)=2鐨刵-1娆″箓 涓斿綋n=1鏃,an=2鐨(1-1)娆″箓=1,婊¤冻棰樻剰 鎵浠鏁板垪{an}鐨閫椤逛负锛歛n=2鐨刵-1娆″箓,瀹冭〃绀轰互1涓洪椤,鍏瘮涓2鐨勭瓑姣旀暟鍒.锛3锛夌敱锛2锛夊彲寰楋細Sn=2鐨刵娆″箓 -1 鍒欐暟鍒梴Sn}鐨勫墠10椤瑰拰锛歍10=2鐨...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰Sn=n^2+2n,鏁板垪{bn}涓虹瓑姣旀暟鍒,鍏瘮q>1,涓攂2=...
    绛旓細Tn= (2n+1)*2^(n+1) - (3*2+2*2^2+2*2^3+...+2*2^(n-1)+2*2^n)Tn= (2n+1)*2^(n+1) - (2^3+2^4+...+2^n+2^(n+1))-6 鍏朵腑2^3+2^4+...+2^n+2^(n+1)涓鍏辨湁:n+1-3+1=n-1椤.Tn=(2n+1)*2^(n+1)- (2^3*(2^(n-1)-1))-6 Tn...
  • 宸茬煡鏁板垪an鐨勫墠n椤瑰拰涓sn涓旀弧瓒砤2=4 2sn=(n+1)
    绛旓細搴旇鏄2Sn=n A锛坣 +1锛夊惂 a1锛2S1=1*a2,a1=S1=2 a3锛2S2=2*a3,a3=S2=a1+a2=6 a4锛2S3=3*a4,a4=2/3S3=2/3(a1+a2+a3)=8 鍙互鐚滄兂锛an = 2n bn = (-1)^n * 2n Tn = b1+b2+b3+b4+...+b15 =-2+4 -6+8 ...-30 =(-2+4)+( -6+8) ...-30 =2+2...
  • 宸茬煡姝鏁板垪{an}鐨勫墠n椤瑰拰涓{sN},涓擲n=1/2(an+1/an),姹傛暟鍒楃殑閫氶」...
    绛旓細an=鈭歯-鈭(n-1)a(n-1)=鈭(n-1)-鈭(n-2)a(n-2)=鈭(n-2)-鈭(n-3)锛氾細a2=鈭2-鈭1 a1=鈭1-鈭0 灏嗗悇椤圭浉鍔狅紝姣忎竴椤归兘浼氳鍓嶄竴椤圭殑琚噺鏁板拰鍚庝竴椤圭殑鍑忔暟娑堟帀銆傛渶鍚庣暀涓嬧垰n-鈭0=鈭歯 鎵浠ュ鏋滃瓨鍦╝n=鈭歯-鈭(n-1)锛岄偅涔堝繀瀹氭湁Sn=鈭歯 浣跨敤鏁板褰掔撼娉曪紝鐚滄祴an鐨閫氶」鍏紡涓篴n...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰Sn=2n^2+3n姹傝瘉鏁板垪{an}涓虹瓑宸暟鍒
    绛旓細鍥犱负a(n+1)=S(n+1)-Sn=2(n+1)^2+3(n+1)-(2n^2+3n)=4n+5,an=Sn-S(n-1)=2n^2+3n-[2(n-1)^2+3(n-1)]=4n+1.鍒檃(n+1)-an=4n+5-(4n+1)=4甯告暟 鎵浠鏁板垪{an}鏄瓑宸暟鍒
  • 宸茬煡{an}鏄瓑宸鏁板垪,鍓峮椤瑰拰涓Sn(n鈭圢*),{bn}鏄椤逛负2鐨勭瓑姣旀暟鍒,涓...
    绛旓細瑙o細濡備笂
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰sn=14n-n^2(n灞炰簬姝f暣鏁),鏁板垪{bn}婊¤冻bn=an鐨...
    绛旓細(1)Sn=14n-n^2 褰搉=1鏃讹紝a1=S1=13 褰搉鈮2鏃讹紝an=Sn-S(n-1)=-2n+15 n=1鏃讹紝涓婂紡涔熸垚绔 鈭碼n=-2n+15 鈭磏鈮7鏃讹紝an>0 n鈮8鏃讹紝an<0 bn=|an|=|-2n+15| bn={ -2n+15,n鈮7 {2n-15,n鈮8 鈭磏=7鎴杗=8鏃讹紝bn鍙栧緱鏈灏忓1 (2)鏁板垪{bn}鐨勫墠n椤瑰拰涓Tn n鈮7鏃...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰Sn=-n2+32n姹傝瘉璇ユ暟鍒椾负绛夊樊鏁板垪銆傞棶n涓轰綍鍊...
    绛旓細锛1锛夊綋n鈮2鏃讹紝an=Sn -S(n-1)=-n²+32n+(n-1)²-32(n-1)=-2n+33 鑰宎1=S1=31=-2脳1+33锛屼篃閫傚悎涓婂紡锛屼粠鑰岄氶」鍏紡涓篴n=-2n+33 浜庢槸 a(n+1) -an=-2(n+1)+33 +2n-33=-2 鎵浠 {an}鏄叕宸负-2鐨勭瓑宸鏁板垪銆傦紙2锛塖n=-n²+32n=-(n-16)²+...
  • 宸茬煡鏁板垪{an}鐨勫墠n椤瑰拰Sn=an^2+bn+c a b c 涓哄父鏁拌瘉鏄庝粠绗簩椤瑰紑濮...
    绛旓細An = Sn-S(n-1)= an^2+bn+c-a(n-1)^2-b(n-1)-c = a(n+n-1)(n-n+1)+b(n-n+1)= a(2n-1)+b 鎵浠 A(n-1) = a[2(n-1)-1]+b = a(2n-3)+b 鎵浠 An-A(n-1) = a(2n-1)+b-a(2n-3)-b = 2a 鏄父鏁 鎵浠鏁板垪{An}浠庣浜岄」璧凤紝鏄叕宸负2a鐨勭瓑宸...
  • 宸茬煡鏁板垪{an}鐨勫墠N椤瑰拰sn=n^2+n+1,an鏄惁涓虹瓑宸暟鍒?
    绛旓細瑙o細涓嶆槸绛夊樊鏁板垪銆傚綋n=1鏃讹紝a1=s1=1+1+1=3 褰搉鈮2鏃讹紝an=Sn-S锛坣-1锛=n²+n+1-[锛坣-1锛²+锛坣-1锛+1]=2n 鎶妌=1甯﹀叆涓婂紡寰梐1=2鈮3 鎵浠an鐨閫氶」鍏紡涓 an=锝3 n=1 2n n鈮2
  • 扩展阅读:已知数列 an 满足 ... 己知数列an的通项公式 ... 等比数列前n项和公式 ... an数列公式大全 ... 设数列{an}满足 ... 已知数列an满足a1 2 ... 数列an n 2的前n项和 ... 已知等比数列{an} ... 已知等差数列{an}的前n项和为sn ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网