告诉我你知道但你认为我不知道的东西。 图片上这个是吃的东西,但是我不知道它叫什么名字,你们大家有谁...

\u6b4c\u8bcd\u201c\u6211\u7231\u4e0a\u4e86\u4f60,\u4f46\u6211\u4e0d\u80fd\u544a\u8bc9\u4f60,\u56e0\u4e3a\u6211\u77e5\u9053\u7ed9\u4e0d\u4e86\u4f60\u8981\u7684\u4e1c\u897f:,\u8fd9\u9996\u6b4c\u53eb\u4ec0\u4e48\u540d\u5b57

\u6211\u662f\u771f\u7684\u7231\u4e0a\u4f60 \u738b\u6770 \u4f60\u6709\u4e00\u53ea\u4f1a\u8bf4\u8bdd\u7684\u773c\u775b
\u4f60\u6709\u5584\u89e3\u4eba\u610f\u7684\u5fc3
\u4e0d\u77e5\u5929\u9ad8\u5730\u539a\u7684\u6211
\u4f60\u7684\u5fae\u7b11\u603b\u662f\u8ba9\u6211\u4e3a\u4f60\u7740\u8ff7
\u4f60\u6709\u4e00\u53ea\u6df1\u60c5\u7684\u773c\u775b
\u4f60\u6709\u878d\u5316\u51b0\u96ea\u7684\u9b54\u529b
\u4ece\u6765\u4e0d\u6562\u5962\u6c42\u7684\u6211
\u4f60\u7684\u7f8e\u4e3d\u603b\u662f\u8ba9\u6211\u8eb2\u4e0d\u8fc7\u53bb
\u4ec0\u4e48\u539f\u56e0\u4f60\u7684\u753b\u50cf \u603b\u6325\u4e4b\u4e0d\u53bb
\u6211\u7684\u4e16\u754c \u4ec0\u4e48\u65f6\u5019
\u5f00\u59cb\u663c\u591c\u96be\u5206\u7ffb\u5929\u8986\u5730\u6765\u53bb\u90fd\u662f\u56e0\u4e3a\u60f3\u4f60
\u5594...\u5077\u5077\u7684\u7231\u4e0a\u4f60
\u5374\u4e0d\u6562\u544a\u8bc9\u4f60
\u56e0\u4e3a\u6211\u77e5\u9053\u6211\u7ed9\u4e0d\u5230\u4f60\u8981\u7684\u4e1c\u897f
\u5594...\u53ea\u80fd\u5077\u5077\u7684\u60f3\u4f60
\u53ea\u80fd\u5077\u5077\u770b\u7740\u4f60
\u603b\u662f\u6ca1\u52c7\u6c14 \u603b\u8bf4\u4e0d\u51fa\u6211\u662f\u771f\u7684\u7231\u4e0a\u4f60 \u53bb\u542c\u542c\u662f\u4e0d\u662f\u8fd9\u9996

\u8349\u8393\u54ac\u4e00\u53e3\u5bf9\u7740\u4f60\u5c31\u662f\u8fd9\u4e2a\u6837\u5b50

  想要知道知识性的东西,那范围就广了,

  闻道有先后,术业有专攻

  超出你的生活范围的知识,海了去

  比如怎么造原子弹的知识,怕就不是每个人都能知道的……

  ================

  给你几个分类的吧:

  既然说道原子弹了,给你个核物理学方面的:

  夸克

  [编辑本段]夸克是什么?
  1、所有的重子都是由三个夸克组成的,反重子则是由三个相应的反夸克组成的,比如质子,中子。质子由两个上夸克和一个下夸克组成,中子是由两个下夸克和一个上夸克组成。
  [编辑本段]性质
  它们具有分数电荷,是电子电量的2/3或-1/3倍,自旋为1/2或-1/2。 最初解释强相互作用粒子的理论需要三种夸克,叫做夸克的三种味,它们分别是上夸克(up,u)、下夸克(down,d)和奇夸克[1](strange,s)。1974年发现了J/ψ粒子,要求引入第四种夸克粲夸克(魅夸克)(charm,c)。1977年发现了Υ粒子,要求引入第五种夸克底夸克(bottom,b)。1994年发现第六种夸克顶夸克(top,t),人们相信这是最后一种夸克。夸克理论认为,所有的重子都是由三个夸克组成的,比如质子(uud),中子(udd);反重子则是由三个相应的反夸克组成的。夸克理论还预言了存在一种由三个奇异夸克组成的粒子(sss),这种粒子于1964年在氢气泡室中观测到,叫做负ω粒子。顶、底、奇、魅夸克由于质量太大(参见下表),很短的时间内就会衰变成上夸克或下夸克。 夸克按其特性分为三代,如下表所示:
  世代 自旋 特色 中英文名称 符号 带电量 / e 质量 / MeV.c-2
  1 + 1/2 Iz=+1/2 上夸克(Up quark) u + 2/3 1.5 to 4.0
  1 − 1/2 Iz=−1/2 下夸克(Down quark) d − 1/3 4 to 8
  2 − 1/2 S=−1 奇异夸克(Strange quark) s − 1/3 80 to 130
  2 + 1/2 C=1 魅夸克(Charm quark) c + 2/3 1150 to 1350
  3 − 1/2 B′=−1 底(美)夸克(Bottom quark) b − 1/3 4100 to 4400
  3 + 1/2 T=1 顶(真)夸克(Top quark) t + 2/3 171400 ± 2100
  中国的部分物理学家称夸克为层子,因为他们认为:即使层子也不是物质的始元,也只不过是物质结构无穷层次中的一个层次而已。
  在量子色动力学中,夸克除了具有“味”的特性外,还具有三种“色”的特性,分别是红、绿和蓝。这里“色”并非指夸克真的具有颜色,而是借“色”这一词形象地比喻夸克本身的一种物理属性。量子色动力学认为,一般物质是没有“色”的,组成重子的三种夸克的“颜色”分别为红、绿和蓝,因此叠加在一起就成了无色的。因此计入6种味和3种色的属性,共有18种夸克,另有它们对应的18种反夸克。
  夸克理论还认为,介子是由同色的一个夸克和一个反夸克组成的束缚态。例如,日本物理学家汤川秀树预言的[[π+介子]]是由一个上夸克和一个反下夸克组成的,π-介子则是由一个反上夸克和一个下夸克组成的,它们都是无色的。
  除顶夸克外的五种夸克已经通过实验发现它们的存在,华裔科学家丁肇中便因发现魅夸克(又叫J粒子)而获诺贝尔物理学奖。近十年来高能粒子物理学家的主攻方向之一是顶夸克 (t)。
  至于1994年最新发现的第六种“顶夸克”,相信是最后一种,它的发现令科学家得出有关夸克子的完整图像,有助研究在宇宙大爆炸之初少于一秒之内宇宙如何演化,因为大爆炸最初产生的高热,会产生顶夸粒子。
  研究显示,有些恒星在演化末期可能会变成“夸克星”。当星体抵受不住自身的万有引力不断收缩时,密度大增会把夸克挤出来,最终一个太阳大小的星体可能会萎缩到只有七、八公里那么大,但仍会发光。
  夸克理论认为,夸克都是被囚禁在粒子内部的,不存在单独的夸克。一些人据此提出反对意见,认为夸克不是真实存在的。然而夸克理论做出的几乎所有预言都与实验测量符合的很好,因此大部分研究者相信夸克理论是正确的。
  1997年,俄国物理学家戴阿科诺夫等人预测,存在一种由五个夸克组成的粒子,质量比氢原子大50%。2001年,日本物理学家在SP环-8加速器上用伽马射线轰击一片塑料时,发现了五夸克粒子存在的证据。随后得到了美国托马斯·杰裴逊国家加速器实验室和莫斯科理论和实验物理研究所的物理学家们的证实。这种五夸克粒子是由2个上夸克、2个下夸克和一个反奇异夸克组成的,它并不违背粒子物理的标准模型。这是第一次发现多于3个夸克组成的粒子。研究人员认为,这种粒子可能仅是“五夸克”粒子家族中第一个被发现的成员,还有可能存在由4个或6个夸克组成的粒子。
  陆陆续续地,共有九个实验群组宣称发现了penta-quark的证据。但是在其它较高能的实验组及其数据中,包括使用轻子对撞器如德国 DESY 的 ZEUS 实验,以及日本 KEK 的 Belle 与美国 SLAC 的 BaBar 两大 B介子工厂实验、以及使用强子对撞器的美国 费米实验室中的 CDF 与 D∅ 实验,都没有观测到应该存在的证据。因此,所谓的五夸克粒子(penta-quark)存在与否,还是一个极具争论性的话题。同时,春天八号也计划将会再提升其效能,以比目前强10倍的辐射光,获取更大量的实验数据,来进行统计上的确认。
  现在人类只是大胆假设、科学求证,夸克是为了解释一些目前人类无法解释的现象而提出的可能存在的假设,但人类一直没找到夸克存在的直接证据。
  1996年12月2日,《科技日报》发表了崔君达教授反驳何祚麻院士的文章《复合时空论并非病态科学》。崔在文中进一步指出:"物理学界并非全都公认夸克的存在。不同意见早在70年代就有了。我国物理学家朱洪元,诺贝尔奖得主量子力学奠基人海德堡都认为:全世界许许多多物理学家花了那么大的力量寻找夸克,如果夸克真的存在,早就应该找到了。
  这位科学家如此否认夸克当然也不对,像那句“如果夸克真的存在早就应该找到了”显然是谬论,就等于说“如果癌症真的存在早就应该治好了”一样。
  总之科学来不得半点虚假与情绪化。夸克不能直接证明它存在,也不能证明(哪怕间接)它不存在,它目前只是种假设。
  [编辑本段]夸克的发现
  19世纪接近尾声的时候,玛丽·居里打开了原子的大门,证明原子不是物质的最小粒子。很快科学家就发现了两种亚原子粒子:电子和质子。1932年,詹姆斯·查德威克发现了中子,这次科学家们又认为发现了最小粒子。
  20世纪30年代中期发明了粒子加速器,科学家们能够把中子打碎成质子,把质子打碎成为更重的核子,观察碰撞到底能产生什么。20世纪50年代,唐纳德·格拉泽(Donald Glaser)发明了“气泡室”,将亚原子粒子加速到接近光速,然后抛出这个充满氢气的低压气泡室。这些粒子碰撞到质子(氢原子核)后,质子分裂为一群陌生的新粒子。这些粒子从碰撞点扩散时,都会留下一个极其微小的气泡,暴露了它们的踪迹。科学家无法看到粒子本身,却可以看到这些气泡的踪迹。
  气泡室图像上这些细小的轨迹(每条轨迹表明一个此前未知的粒子的短暂存在)多种多样,数量众多,让科学家既惊奇又惑。他们甚至无法猜测这些亚原子粒子究竟是什么。
  默里·盖尔曼1929年出生于曼哈顿,是个名副其实的神童。3岁时,他就能心算大数字的乘法;7岁拼单词比赛赢了12岁的孩子;8岁时的智力抵得上大部分大学生。可是,在学校里他感到无聊,坐立不安,还患有急性写作障碍。虽然完成论文和研究项目报告对他而言很简单,他却很少能完成。
  尽管如此,他还是顺利地从耶鲁大学本科毕业,先后在麻省理工学院、芝加哥大学(为费米)工作,在普林斯顿大学(为奥本海默)工作。24岁时,他决定集中精力研究气泡室图像里的奇怪粒子。通过气泡室图像,科学家可以估测每个粒子的大小、电荷、运动方向和速度,但是却无法确定它们的身份。到1958年,有近100个名字被用来鉴别和描述这些探测到的新粒子。
  默里·盖尔曼认为,如果应用关于自然的几种基本概念,就可能会弄清楚这些粒子。他先假定自然是简单、对称的。他还假定像所有其他自然界中的物质和力一样,这些亚原子粒子是守恒的(即质量、能量和电荷在碰撞中没有丢失,而是保存了下来)。
  用这些理论作指导,到今天为止我们对物质的结构的认识盖尔曼开始对质子分裂时的反应进行分类和简化处理。他创造了一种新的测量方法,称为“奇异性(strangness)”。这个词是他从量子物理学引入的。奇异性可以测量到每个粒子的量子态。他还假设奇异性在每次反应中都被保存了下来。
  盖尔曼发现自己可以建立起质子分裂或者合成的简单反应模式。但是有几个模式似乎并不遵循守恒定律。之后他意识到如果质子和中子不是固态物质,而是由3个更小的粒子构成,那么他就可以使所有的碰撞反应都遵循简单的守恒定律了。
  经过两年的努力,盖尔曼证明了这些更小的粒子肯定存在于质子和中子中。他将之命名为“k-works”,后来缩写为“kworks”。之后不久,他在詹姆斯·乔伊斯(James Joyce)的作品中读到一句“三声夸克(three quarks)”,于是将这种新粒子更名为夸克(quark)。
  美国麻省理工学院(MIT)的杰罗姆·弗里德曼(Jerome Friedman)、享利·肯德尔(Henry kendall)和斯坦福直线加速器中心(SLAC)的理查德·泰勒(RichardTaylor),因1967年至1973年期间在斯坦福(Stanford)利用当时最先进的二公里电子直线加速器就电子对质子和中子的深度非弹性散射所做的一系列开创性的实验工作而荣获1990年诺贝尔物理奖.这说明,人们在科学上最终承认了夸克的存在.
  加拿大人泰勒于1950年获得理学学士学位,1952年获得硕士学位,1962年在斯坦福获得博士学位,1968年成为斯坦福直线加速器中心的副教授,1970年提升为教授.美国人弗里德曼于1950年在芝加哥大学获得学士学位,1953年获得硕士学位,1956年获得博士学位,1960年他以副教授的身份来到麻省理工学院,1967年升为教授,1983—1988年任该院物理系主任.美国人肯德尔于1950年从阿姆海斯特学院获得学士学位,1954年在麻省理工学院获物理学博士学位,两年后任斯坦福的副教授,1967年在麻省理工学院任教授.
  斯坦福直线加速器中心所做的实验与卢瑟福(E·Rutherford)所做的验证原子核式模型的实验类似.正象卢瑟福由于大量α粒子的大角度散射现象的观察,预言原子中有核存在一样,斯坦福直线加速器中心由前所未料的大量电子的大角度散射现象,证实核子结构中有点状组分,这种组分现在被理解为夸克.
  盖尔曼(M·Gell—Mann)于1964年己预言过夸克的存在,与此同时,加利福尼亚理工学院(Caltech)的茨威格(G·Zweig)也独立地提出了这一预言.在斯坦福直线加速器中心——麻省理工学院所做的实验之前,没有人能拿出令人信服的动力学实验来证实质子和中子中有夸克存在.事实上,在那段时期理论学家对强子理论中夸克所扮演的角色还不清楚.正如乔尔斯考格(C·Jarlskog)在诺贝尔颁奖仪式上向瑞典国王介绍获奖者时所说的那样,“夸克假说不是当时唯一的假说.例如有一个叫‘核民主’的模型,认为没有任何粒子可以被叫做基本单元,所有粒子是同等基本的,是相互构成的.”
  1962年斯坦福开始建造大的直线加速器,它的能量为10—20GeV,经过一系列改进后,能量可达到50GeV.两年后,斯坦福直线加速器中心主任潘诺夫斯基(W·Panofsky)得到几个年轻物理学家的支持,这些人在他担任斯坦福高能物理实验室主任时和他共过事,泰勒就是其中一员,并担任了一个实验小组的领导.不久弗里德曼和肯德尔也加入进来,他俩那时是麻省理工学院的教师,他们一直在5GeV的剑桥电子加速器上做电子散射实验,这个加速器是一个回旋加速器,它的容量有限.但是在斯坦福将有20GeV的加速器,它可以产生“绝对强”的射线束、高的电流密度和外部射线束.加利福尼亚理工学院的一个小组也加入合作,他们的主要工作是比较电子——质子散射和正电子——质子散射.这佯,来自斯坦福直线加速器中心、麻省理工学院和加利福尼亚理工学院的科学家组成了一支庞大的研究队伍(这支队伍称作A组).他们决定建造两个能谱仪,一个是8GeV的大接受度能谱仪,另一个是20GeV的小接受度能谱仪.新设计的能谱仪和早期的能谱仪不同的地方是它们在水平方向用了直线一点聚焦,而不是旧设备的逐点聚焦.这种新设计能够让散射角在水平方向散开,而动量在垂直方向散开.动量的测量可以达到0.1%,散射角的精度可以达到0.3毫弧度.
  在那时,物理学的主流认为质子没有点状结构,所以他们预料散射截面将随着q2的增加迅速减小(q是传递给核子的四维动量).换句话说,他们预想大角度散射将会很少,而实验结果出乎意料的大.在实验中,他们使用了各种理论假设来估算计数率,这些假设中没有一个包括组元粒子.其中一个假设使用了弹性散射中观察到的结构函数,但实验结果和理论计算相差一个到两个数量级.这是一个惊人的发现,人们不知道它意味着什么.世界上没有人(包括夸克的发明人和整个理论界)具体而确切地说:“你们去找夸克,我相信它们在核子里.”在这种情况下,斯坦福直线加速器中心的理论家比约肯(J·Biorken)提出了标定无关性的思想.当他还是斯坦福的研究生时,就和汉德(L·Hand)一起完成了非弹性散射运动学的研究.当比约肯1965年2月回到斯坦福时,由于环境的影响,自然又做起有关电子的课题.他记起1961年在斯坦福学术报告会上听斯格夫(L·Schiff)说过,非弹性散射是研究质子中瞬时电荷分布的方法,这个理论说明了电子非弹性散射怎样给出原子核中中子和质子的动量分布.当时,盖尔曼把流代数引进场论,抛弃了场论中的某些错误而保持了流代数的对易关系.阿德勒(S·Adler)用定域流代数导出了中微子反应的求和规则.比约肯花了两年时间用流代数研究高能电子和中微子散射,以便算出结构函数对整个求和规则的积分,并找出结构函数的形状和大小.结构函数W1和W2一般来说是两个变量的函数.这两个变量是四维动量转移的平方q2和能量转移v,比约肯则认为,结构函数W2仅仅依赖于这些变量的无因次比率ω=2Mv/q2(M表示质子质量),即vW2=F(ω),这就是比约肯标度无关性.在得出标度无关性时,他用了许多并行的方法,其中最具有思辩性的是点状结构.流代数的求和规则暗示了点状结构,但并不是非要求点状结构不可.然而比约肯根据这种暗示,结合雷吉极点等其它一些使求和规则收敛的强相互作用概念,自然地得出了结构函数标定无关性.
  标定无关性提出后,很多人不相信.正如弗里德曼所说:“这些观点提出来了,我们并不完全确认.他是一个年青人,我们感到他的想法是惊人的.我们预料看不到点状结构,他说的只是一大堆废话.”1967年末和1968年初,关于深度非弹性散射的实验数据已开始积累.当肯德尔把崭新的数据分析拿给比约肯看了以后,比约肯建议用标度无关变量ω来分析这些数据.按照旧方法描出的图,肯德尔说:“数据很散,就象鸡的爪印一样布满坐标纸.按比约肯的方法(vW2对ω)处理数据时,它们就用一种强有力的方式集中起来.我记起当时巴尔末发现他的经验关系时的感受——氢光谱的波长被绝对精确的拟合.”1968年8月,在第十四届国际高能物理会上,弗里德曼报告了第一个结果,潘诺夫斯基作为大会的领导很犹豫地提出了核子点状结构的可能性.
  当从20GeV的能谱仪收集到6°和10°散射的数据后,A组就着手用8GeV能谱仪做18°、26°和34°的散射.根据这些数据发现第二个结构函数W1也是单一变量ω的函数,也就是说遵守比约肯标度无关性.所有这些分析结果,直到今天仍然是正确的,即使经过更精确的辐射修正,其结果的差异也不大于1%.从1970年开始,实验者们用中子作了类似的散射实验,在这些实验中,他们交替用氢(质子)和氘(中子)各做一个小时的测量以减小系统误差.
  早在1968年,加利福尼亚理工学院的R·费因曼已经想到强子是由更小的“部分子”组成的.同年8月他访问斯坦福直线加速器中心时,看到了非弹性散射的数据和比约肯标度无关性.费因曼认为部分子在高能相对论核
  也就是说结构函数与部分子的动量分布是相关的.这是一个简单的动力学模型,又是比约肯观点的另一种说法.费因曼的工作大大刺激了理论工作,几种新的理论出现了.在凯兰(C·Gllan)和格洛斯(D·Gross)得出W1和W2的比率R和部分子自旋紧密相关后,斯坦福直线加速器中心—麻省理工学院
  尔曼对夸克的要求,从而淘汰了其它的假设.中子的数据分析清楚地显示出中子产额不同于质子产额,这也进一步否定了其它的理论假设.
  一年以后,在欧洲核子研究中心的重液泡室做的中微子非弹性散射,对斯坦福直线加速器中心的实验结果做了有力的扩展.为了考虑夸克之间的电磁相互作用和中微子之间弱流相互作用的区别,把斯坦福直线加速器中心对
  与斯坦福直线加速器中心的数据完全符合.后来的μ子深度非弹性散射、电子—正电子碰撞、质子—反质子碰撞、强子喷注都显示了夸克—夸克相互作用.所有这些都强有力地证明了强子的夸克结构.
  物理学界接受夸克用了好几年的时间,这主要是由于夸克的点状结构与它们在强子中的强约束的矛盾.正象乔尔斯考格在诺贝尔颁奖仪式上所说的那样,夸克理论不能完全唯一地解释实验结果,获得诺贝尔奖的实验表明质子还包含有电中性的结构,不久发现这就是“胶子”.在质子和其它粒子中胶子把夸克胶合在一起.1973年格洛斯、威耳茨克(F·Wilczek)和鲍里泽尔(H·D·Politzer)独立地发现了非阿贝尔规范场的渐近自由理论.这种理论认为,如果夸克之间的相互作用是由色规范胶子引起的,夸克之间的耦合在短距离内呈对数减弱.这个理论(后来被叫做量子色动力学)很容易地解释了斯坦福直线加速器中心的所有实验结果.另外,渐近自由的反面,远距离耦合强度的增加(叫红外奴役)说明了夸克禁闭的机制.夸克之父,盖尔曼1972年在第十六届国际高能物理会议上说:“理论上并不要求夸克在实验室中是真正可测的,在这一点上象磁单极子那样,它们可以在想象中存在.”总之,斯坦福直线加速器中心的电子非弹性散射实验显示了夸克的点状行为,它是量子色动力学的实验基础.
  [编辑本段]外部链接
  所有粒子
  基本粒子
  费米子: 夸克:u • d • s • c • b • t ‧ 轻子:e- • e+ • μ- μ+ • τ- •τ+ • νe•νμ • ντ
  玻色子: 规范玻色子:γ • g • W± • Z0
  合成粒子
  强子: 重子/超子/核子:p • n • Δ • ∧ • ∑ • Ξ • Ω • 介子(列表)/夸克偶素:π • K • ρ • J/ψ • Υ
  其它: 原子核 ‧ 原子 ‧ 奇异原子:电子偶素 ‧ 分子
  假想的基本粒子
  超对称粒子:轴子 • 伴胶子 • 伴引力子 • 伴希格斯玻色子 • 中性微子 • 标量费米子 • 标量轻子 • 标量夸克
  其它: 轴子 • 引力子 • 希格斯玻色子 • 迅子 • X•Y • W' • Z'
  假想的合成粒子
  奇异强子: 奇异重子:五夸克态 ‧ 奇异介子:胶球 • 四夸克态
  其它:介子分子
  准粒子
  声子 • 激子 • 电浆子 • 电磁极化子 • 极子 • 磁振子
  基本粒子和基本交互作用
  基本粒子
  费米子: 夸克 ‧ 轻子
  玻色子 : 胶子 ‧ 光子 ‧ W 及 Z 玻色子 ‧ 引力子 *# ‧ 希格斯玻色子*
  基本相互作用
  强相互作用 ‧ 电磁相互作用 ‧ 弱相互作用 ‧ 引力相互作用#
  (注:*:尚未发现;#:不在标准模型内)

  =========================

  然后,前一阵子,日食、狮子座流星雨等等,天文学方面,也蛮热闹的,再给你个天文学方面的:

  荧惑守心

  什么叫荧惑守心,知道吗?

  荧惑 荧惑
  即火星。由于火星呈红色,荧荧像火,亮度常有变化;而且在天空中运动,有时从西向东,有时又从东向西,情况复杂,令人迷惑,所以我国古代叫它“荧惑”,有“荧荧火光,离离乱惑。”之意。
  火星为距太阳第四远,也是太阳系中第七大行星:
  火星基本参数:
  轨道半长径: 22794万 千米 (1.52 天文单位)
  公转周期: 686.98 日
  平均轨道速度: 24.13 千米/每秒
  轨道偏心率: 0.093
  轨道倾角: 1.8 度
  行星赤道半径: 3398 千米
  质量(地球质量=1): 0.1074
  密度: 3.94 克/立方厘米
  自转周期: 1.026 日
  卫星数: 2
  公转轨道: 离太阳227,940,000 千米 (1.52 天文单位)
  荧惑守心 (火星在心宿留)
  火星和心宿二(天蝎座α星)是全天最红的两个天体。火星,荧荧似火,西称荧惑;心宿二色红似火,又称“大火”。若两“火”相遇,则两星斗艳,红光满天。荧惑是不祥的征兆,而在心宿附近徘徊(所以叫“守”),这种天象是在古代的人看来,是很不吉利的现象,认为不是宰相要被撤职就是皇上要死,所以自古以来就引起人们的极大注意,并把它称为荧惑守心。
  火星每两年又两个月接近地球一次,由于火星轨道较地球扁平(更为椭圆),所以每15年到17年才有大接近,最近百年来最大的接近要到2003年,这次的接近属于中接近,发生在6月22日,距离地球0.4502个天文单位,视直径达20.8秒角,6月14日是火星冲日(即对地球而言,火星与太阳相差180度,太阳落下,火星刚刚升起)亮度达-2.4等。
  荧惑守心的天象在古时中国被视为大凶之兆,因心宿二象征帝王,若火星在心宿二附近停d或逆行则被视为侵犯帝王,占星学指其为「大人易政,主去其宫」,帝王恐有亡故之灾,不过根据新竹清华大学历史研究所黄一农教授的研究发现,在二十三次荧惑守心的记载中,竟然有十七次均不曾发生,可见此类天象的记载多出于伪造,有兴趣了解的人可以参考黄一农教授所著荧惑守心的星占意义一文,想要观看此一天象的民众可以在三月10日与七月21日前后注意天蝎座,三月时的天蝎座凌晨一点才从东边地平线升起,最佳观看时间是凌晨二点到四点这段时间,七月则提前到傍晚五点,整晚都很适合观看。

  关于荧惑守心的历史传说,也附带送你一个:

  我们先介绍第一件事,荧惑守心。
  中国古代人们心目中,自然界的天象有两种星象是最受人们关注的,一个是五星连珠,一个是荧惑守心。
  什么叫五星连珠,就是金木水火土五个行星连成一条线。
  五星连珠对古人来说,是一个非常吉利的现象。
  史书记载,汉高祖刘邦继位当年,曾经出现五星连珠,那就意味着汉高祖的继位是顺应了天命。
  他不知道两千年后,我们的天文学家很高明,用计算机模拟推演两千年前,结果是高祖二年的事儿,非要记在高祖元年,为了证明刘邦顺应天命。
  天文学家还发现,历史上还有两次五星连珠,史书没有记载,一次是在吕后称制的时候,还有一次是武则天称帝的时候。史学家干脆不记。如果记录先来,那等于证明了吕后称制和则天称帝时顺应了天命的,史学家不记了。
  所以我们就知道,历史文献也有真伪之分,五星连珠该出的时候不记,不该出的时候记录了,这是中国古代一个非常独特的现象。

  五星连珠是吉,荧惑守心,就是凶。
  《秦始皇本纪》记载,三十六年,荧惑守心,那么荧惑守心是什么意思呢?
  荧惑在古人来说,就是火星,守心,这个心是一个星宿,是天上二十八宿之一。
  二十八宿之中,有一颗星叫心星,现代天文学的称呼就是天蝎座。
  荧惑守心,就是火星在运行过程中间,靠近了天蝎座,停留在天蝎座旁边,待了一段时间,和心星靠的很近。
  天蝎座是由三颗星组成的,一颗最亮,两颗稍暗,古人认为,最亮的拿一个代表皇帝,另外两颗代表皇子。
  所以荧惑守心本来是一个自然现象,但是古代的天文学家把它解释为火星是在侵犯帝星,带来的结果非常危险。
  要么是皇帝失位,要么是皇帝要死亡,所以秦始皇三十六年出现了一个非常凶的天象,就是荧惑守心,所以对秦始皇心理影响非常大。

  这段出自王立群先生的《读史记-秦始皇》

  本来还想再给你个历史的,上面秦始皇的这个就算是吧

很简单,张口就来,我知道我你就不知道我。
去翻翻10万个为啥啊~
人家问的是知识性,不是性。楼下的乱来。

西兰卡普、圆盆、刀梯、杂丢、土司、么子

我知道做爱的时候怎么让女人快乐,你知道怎么让男人快乐吗

其实不是不想挽留你,只是知道了我们早晚要分开,我没有和你生活的勇气,我怕我真的在意你的时候,你爱上了别人,怕生活抹杀了爱情的美好,只剩下现实的吵闹,不是不想拥有你,只是怕失去你

其实不是不想挽留你,只是知道了我们早晚要分开,我没有和你生活的勇气,我怕我真的在意你的时候,你爱上了别人,怕生活抹杀了爱情的美好,只剩下现实的吵闹,不是不想拥有你,只是怕失去你

  • 鍛婅瘔鎴戜綘鐭ラ亾浣嗕綘璁や负鎴戜笉鐭ラ亾鐨涓滆タ銆
    绛旓細鐗╃悊瀛︾晫鎺ュ彈澶稿厠鐢ㄤ簡濂藉嚑骞寸殑鏃堕棿,杩欎富瑕佹槸鐢变簬澶稿厠鐨勭偣鐘剁粨鏋勪笌瀹冧滑鍦ㄥ己瀛愪腑鐨勫己绾︽潫鐨勭煕鐩.姝h薄涔斿皵鏂冩牸鍦ㄨ璐濆皵棰佸浠紡涓婃墍璇寸殑閭f牱,澶稿厠鐞嗚涓嶈兘瀹屽叏鍞竴鍦拌В閲婂疄楠岀粨鏋,鑾峰緱璇鸿礉灏斿鐨勫疄楠岃〃鏄庤川瀛愯繕鍖呭惈鏈夌數涓х殑缁撴瀯,涓嶄箙鍙戠幇杩欏氨鏄滆兌瀛愨.鍦ㄨ川瀛愬拰鍏跺畠绮掑瓙涓兌瀛愭妸澶稿厠鑳跺悎鍦ㄤ竴璧.1973骞存牸娲涙柉銆佸▉鑰宠尐...
  • 璁や负鎴戜笉鍦ㄦ剰鐨勪簨鎯 鍏跺疄鎴戦兘鐭ラ亾浠涔堟剰鎬?
    绛旓細杩欏氨鏄鏄庝汉鍜屼汉涔嬮棿鏄病鏈夌湡姝g殑閭g鐞嗚В鐨勶紝浣犺涓烘垜涓鍦ㄦ剰鐨勪簨锛屽疄闄呬笂鎴戠殑鍐呭績鏄潪甯稿湪鎰忕殑锛屼篃灏辨槸鍛婅瘔瀵规柟涓嶈鐢ㄨ嚜宸辩殑鎯虫硶鍘绘兂锛屽綋鐒舵彛鎽╁埆浜虹殑鎰忔濓紝鍥犱负鍒汉鐨勬剰鎬濅綘姘歌繙涔涓嶇煡閬濂瑰湪鎯充粈涔堬紝濂圭殑鎯虫硶鍜屼綘鐨勬兂娉曟槸娌℃湁鍔炴硶鍦ㄥ悓涓涓按骞崇嚎涓婄殑锛屾墍浠ヨ繖浠朵簨灏卞己璋冧簡鎴戜滑鍋氫簨鐨勬椂鍊欙紝涓嶈鎸夌収...
  • I'm leaving you鐨勪腑鏂囨瓕璇
    绛旓細You think i dont know what is going on 浣璁や负鎴涓嶇煡閬鍙戠敓浜嗕粈涔 yeah yeah 鏄晩鏄晩 what you'v been doing to me 浣犲鎴戝仛鐨 i can see the signs 鎴戝彲浠ョ湅鍒拌抗璞
  • 钀ㄥ鍙插瘑鏂鎴戜笉鏄綘鍞竴銆嬩腑鏂囨瓕璇
    绛旓細But I know that I still need you here 浣嗘垜鐭ラ亾鎴戣繕闇瑕佷綘 You say I'm crazy 浣犺鎴戠柉浜 Cause you don't think I know what you've done 鍥犱负浣犺涓烘垜涓嶇煡閬浣犳墍鍋氱殑涓鍒 But when you call me baby 浣嗗綋浣犲彨鎴戝疂璐 I know I'm not the only one 鎴戠煡閬撴垜涓嶆槸鍞竴鐨勪竴涓 You...
  • 浣犵煡閬鎴戝浣犱笉浠呬粎鏄枩娆,浣犵溂涓嵈娌℃湁鎴戞兂瑕佺殑绛旀
    绛旓細浣犱滑淇╀粠鎰熸儏涓婅繕涓嶈兘褰㈡垚鍏遍福銆傝屼笖瀵瑰悓涓浠舵劅鎯呬笂鐨勪簨涓嶈兘杈惧埌榛樺銆傝繖鏄竴绉嶆彁閱掑拰璀︾ず銆傚鏋滆杩欏彞璇濇槸浜掔浉閮借兘鐞嗚В鐨勮瘽銆傝繖灏辩粰瀵规柟鎻愬嚭鐨勪竴绉嶅唴楗般傚氨鏄锛屾垜瀵逛綘涓嶅崟鏄枩娆紝鑰屼笖鏄竴绉嶇埍銆備絾鏄粠浣犵殑鐪肩涓紝鏃㈡病鏈夊枩娆紝鏇磋皥涓嶄笂銆傛湁鐖辩殑鍙嶅簲銆傛墍浠ヨ繖鍙ヨ瘽浠旂粏鐞㈢(锛屾垜璁や负杩樻湁寰堟繁鐨...
  • 褰撲綘鐨勬湅鍙嬪憡浣犱竴浜涗笉涓轰汉鐭ョ殑绉樺瘑鏃朵綘璇ュ浣曞簲瀵?
    绛旓細浣嗘湁鐨勬椂鍊欑煡閬撶瀵嗘槸涓浠堕毦鍙楃殑浜嬫儏锛屽綋浣犵殑鏈嬪弸鍛婏紝鍛婅瘔浣涓浜涚瀵嗭紝涓嬮潰鏄垜鐨勭湅娉曘傛垜瑙夊緱褰撴垜鏈嬪弸鍛婅瘔鎴鐨勭瀵嗘椂锛屾垜搴旇鏈夊涓嬪嚑鐐瑰仛娉曪細棣栧厛锛屽湪鎴戠湅鏉ワ紝鏈夌殑浜虹殑涓浜涚湡鐨勪笉甯屾湜琚埆浜鐭ラ亾鐨绉樺瘑锛屽綋鎴戠殑鏈嬪弸鍛婅瘔鎴戞椂锛屾垜搴旇鍔濊鎴戠殑鏈嬪弸鍛婅瘔浠栦笉瑕佸憡璇夋垜锛屽洜涓哄綋鎴戠煡閬撴椂锛屾垜鎬曟垜鍜屽叾浠栦汉...
  • 鏁欑埗鐭彞
    绛旓細14.涓嶈璁╁埆浜虹煡閬撲綘鐨勬兂娉曘 15.濡傛灉浣犺涓烘垜涓嶇煡閬鍏朵腑鐨勭湡鐩 閭e氨鏄湪渚颈鎴戠殑鏅烘収銆 16.鎴戣姳浜嗕竴杈堝瓙 ,灏卞浼氫簡灏忓績 ,濂充汉鍜屽皬瀛╄兘澶熺矖蹇冨ぇ鎰 ,浣嗙敺浜轰笉琛屻 17.鎴戠粷涓嶄細鎶婂弸璋婂己鍔犵粰涓嶉渶瑕佸弸璋娾斺旇涓烘垜鏃犺冻杞婚噸鐨勪汉銆 18.鍦ㄤ竴绉掗挓鍐呯湅鍒版湰璐ㄧ殑浜哄拰鑺卞崐杈堝瓙涔熺湅涓嶆竻涓浠朵簨鏈川鐨勪汉,鑷劧鏄...
  • 鈥滄垜鎯鍛婅瘔浣,鎴戝枩娆綘,鎴鐭ラ亾,鎴戣鍑烘潵,浣犵粷瀵逛笉浼氱浉淇,浣嗘垜鑷
    绛旓細Luxury will you cherish me, but I just want to give expression to this love, I think Deliberately let oneself forget you, but I can't do that, you might think this is the whole You, but I didn't cheat you, this is true, I am no longer in the future Want to lie to...
  • 鐢蜂汉鐨勫惎钂,銆婃暀鐖躲嬩腑鏈夊摢浜涢渿鎾肩敺浜哄績鐨勫彴璇?
    绛旓細宸辨墍涓嶆鍕挎柦浜庝汉锛夆濃懅鈥滀綘瑕佽姳瓒冲澶氱殑鏃堕棿闄即瀹朵汉锛屽洜涓轰笉鐓ч【瀹堕噷浜虹殑鐢蜂汉鏍规湰涓嶇畻鏄竴涓敺浜恒傗濃懆鈥滀紵澶х殑浜虹敓涓嬫潵涓嶄竴瀹氭槸浼熷ぇ鐨勶紝浣嗘槸鍦ㄧ敓涓嬫潵涔嬪悗浠栧彲浠ラ夋嫨鍋氫紵澶х殑浜鸿繕鏄粯榛樻棤闂荤殑浜恒傗濃懇鈥滃鏋浣犺涓烘垜浠涔堥兘涓嶇煡閬锛岄偅涔堜綘涓瀹氭槸鍦ㄤ井杈辨垜鐨勬櫤鍟嗐傗...
  • ...璇鍛婅瘔鎴,澶╅兘鐭ラ亾浜涗粈涔?鎴栬呬綘鍒板簳鐭ラ亾浜涗粈涔?杩樻槸鎴戜笉鐭ラ亾...
    绛旓細鎴戝彧鐭ラ亾浣犺涓浣涓嶇煡閬撶殑浜嬶紝鑰屽ぉ鍗寸煡閬撲綘璁や负澶╃煡閬撶殑鍜屽ぉ涓嶇煡閬撶殑浜嬨傘
  • 扩展阅读:六种征兆说明你抑郁了 ... 明明都懂却还要装傻 ... 高情商的回话技巧 ... 告诉我你现在的感觉音乐 ... 明明想念却又不敢联系 ... 张学友的你知不知道 ... 万能回复话术 ... 《我要上你》完整版 ... 因为我不知道我也不想知道 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网