细谈lldpe种类及特性 LLDPE 电缆

lldpe7042\u548clldpe7042n\u6709\u4ec0\u4e48\u4e0d\u540c?

LLDPE 7042 \u548c7042N\uff0c\u6280\u672f\u53c2\u6570\u4e0a\u5e76\u6ca1\u6709\u4ec0\u4e48\u5927\u7684\u533a\u522b\u751a\u81f3\u662f\u662f\u4e00\u6837\u7684\uff0c\u662f\u7528\u4e8e\u751f\u4ea7\u5404\u79cd\u8584\u819c\u7684\u819c\u6599\u3002
\u4e3b\u8981\u533a\u522b\u5728\u610f7042\u542b\u5f00\u53e3\u723d\u6ed1\u5242\uff0c7042N\u662f\u4e0d\u542b\u5f00\u53e3\u723d\u6ed1\u5242\u7684\u3002\u8fd9\u91cc\u7684N\uff0c\u5176\u5b9e\u5c31\u662f\u82f1\u6587\u5355\u8bcdNo\u7684\u5b57\u6bcd\u7b80\u5199\uff0c\u610f\u601d\u5c31\u662f\u6ca1\u6709\u3001\u4e0d\u3002
7042\u548c7042N\u5b8c\u6574\u7684\u724c\u53f7\u662f\uff1aDFDA-7042\u548cDFDA-7042N\u3002\u5851\u6599\u79cd\u7c7b\u7e41\u591a\u3001\u724c\u53f7\u8bf8\u591a\uff0c\u4e00\u4e2a\u5b57\u6bcd\u6216\u8005\u6570\u5b57\u7684\u76f8\u5dee\uff0c\u5b9e\u9645\u4ee3\u8868\u7684\u724c\u53f7\u5c31\u6709\u53ef\u80fd\u5dee\u4e4b\u5343\u91cc\u7684\u3002\u6240\u4ee5\uff0c\u5728\u5f62\u6210\u6587\u5b57\u63cf\u8ff0\u7684\u65f6\u5019\u6700\u597d\u63d0\u4f9b\u5b8c\u6574\u7684\u724c\u53f7\uff0c\u4ee5\u514d\u5dee\u751f\u6b67\u4e49\u3002

\u662f\u7684\uff0c\u4ea4\u8054\u805a\u4e59\u70ef

  线型低密度聚乙烯( Linear Low-Density Polyethy -lene ),英文缩写为LLDPE。线型低密度聚乙烯在结构上不同于一般的低密度聚乙烯,因为不存在长支链。LLDPE已渗透到聚乙烯的大多数传统市场,包括薄膜、模塑、管材和电线电缆。

  按共聚单体类型,LLDPE主要划分为3种共聚物:C4(丁烯-1)、C6(己烯-1)和C8(辛烯-1)。
  【C4(丁烯-1)】
  用于制丁二烯、异戊二烯、合成橡胶等。1-丁烯是合成仲丁醇、脱氢制丁二烯的原料;顺、反2-丁烯用于合成C4、C5衍生物及制取交联剂、叠合汽油等;异烯是制造丁基橡胶、聚异丁烯橡胶的原料,与甲醛反应生成异戊二烯。
  【C6(己烯-1)】

  不溶于水,溶于醇、醚等多数有机溶剂。
  主要用途: 用于制造香料、染料及合成树脂。
  【C8(辛烯-1)】
  无色液态烯烃化合物,常用作聚乙烯(PE)共聚单体及生产增塑剂、表面活性剂和合成润滑油的原料。

一、LLDPE简介线性低密度聚乙烯(LLDPE),是乙烯与少量高级α-烯烃(如丁烯-1、电子己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,密度处于0.915~0.940克/立方厘米之间。

一、LLDPE简介
线性低密度聚乙烯(LLDPE),是乙烯与少量高级α-烯烃(如丁烯-1、己烯-1、辛烯-1、四甲基戊烯-1等)在催化剂作用下,经高压或低压聚合而成的一种共聚物,密度处于0.915~0.940克/立方厘米之间。但按ASTM 的D-1248-84规定,0.926~0.940克/立方厘米的密度范围属中密度聚乙烯(MDPE)。新一代LLDPE将其密度扩大至塑性体(0.890~0.915克/立方厘米)和弹性体(<0.890克/立方厘米)。但美国塑料工业协会(SPI)和美国塑料工业委员会(APC)只将LLDPE的范围扩大至塑性体,不包括弹性体。上世纪80年代,Union Carbide和Dow Chemical公司将其早期销售的塑性体和弹性体称之为非常低密度的聚乙烯(VLDPE)和超低密度聚乙烯(ULDPE)树脂。
常规LLDPE的分子结构以其线性主链为特征,只有少量或没有长支链,但包含一些短支链。没有长支链使聚合物的结晶性较高。
通常,LLDPE树脂用密度和熔体指数来表征。密度由聚合物链中共聚单体的浓度决定。共聚单体的浓度决定了聚合物中的短支链量。短支链的长度则取决于共聚单体的类型。共聚单体浓度越高,树脂的密度越低。此外,熔体指数是树脂平均分子量的反映,主要由反应温度(溶液法)和加入链转移剂(气相法)来决定。平均分子量与分子量分布无关,后者主要受催化剂类型影响。
LLDPE在20世纪70年代由Union Carbide公司工业化,它代表了聚乙烯催化剂和工艺技术的重大变革,使聚乙烯的产品范围显著扩大。LLDPE用配位催化剂代替自由基引发剂,以及用较低成本的低压气相聚合取代成本较高的高压反应器,在比较短的时间内,便以其优异的性能和较低的成本,在许多领域已替代了LDPE。目前LLDPE几乎渗透到所有的传统聚乙烯市场,包括薄膜、模塑、管材和电线电缆。
LLDPE产品无毒、无味、无臭,呈乳白色颗粒。与LDPE相比具有强度高、韧性好、刚性强、耐热、耐寒等优点,还具有良好的耐环境应力开裂、耐撕裂强度等性能,并可耐酸、碱、有机溶剂等。
(一)、LLDPE的应用领域
LLDPE的主要应用领域是农膜、包装膜、电线电缆、管材、涂层制品等。
线形低密度聚乙烯由于较高的抗张强度、较好的抗穿刺和抗撕裂性能,主要用于制造薄膜。预计未来2~3年内,虽然各项品种的绝对消费量将继续增长,但其消费比例会基本维持目前态势;由于包装膜的需求相对增长较快,农膜的消费比例将会降至20%左右。由于LLDPE的性能不断改善,其应用领域也不断扩大,未来市场对LLDPE的需求增速将大大高于LDPE和HDPE。
(二)、LLDPE的分类
按共聚单体类型,LLDPE主要划分为3种共聚物:C4(丁烯-1)、C6(己烯-1)和C8(辛烯-1)。其中,丁烯共聚物是全球生产量最大的LLDPE树脂,而己烯共聚物则是目前增长最快的LLDPE品种。在LLDPE树脂中,共聚单体的典型用量为5%~10%重量分数,平均用量大约为7%。茂金属基的LLDPE塑性体(mLLDPE)具有传统LLDPE 3倍多的平均共聚单体含量。图表1显示的是引用自外刊的10年间世界3种共聚单体LLDPE的产量。(图表说明:Butene:丁烯;Hexene:己烯;Octene:辛烯)
与通常使用的丁烯共聚单体相比,以己烯和辛烯作为共聚单体生产的LLDPE具有更为优良的性能。LLDPE树脂的最大用途在于薄膜的生产,以长链α-烯烃(如己烯、辛烯)作为共聚单体生产的LLDPE树脂制成的薄膜及制品在拉伸强度、冲击强度、撕裂强度、耐穿刺性、耐环境应力开裂性等许多方面均优于用丁烯作为共聚单体生产的LLDPE树脂。自20世纪90年代以来,国外的PE生产厂商及用户均趋向于用己烯及辛烯替代丁烯。据悉,用辛烯作共聚单体,树脂性能不一定能比己烯共聚有更进一步的改善,且价格反而贵些,因此目前国外主要LLDPE生产商使用己烯来替代丁烯的趋势更为明显。
目前,由于国内尚无大规模生产己烯、辛烯,且进口价格较贵,因此,现今国内生产的LLDPE树脂主要用丁烯作为共聚单体。国内有些企业在引进LLDPE生产装置时虽有用己烯作共聚单体的牌号,但终因国内无己烯生产而不得不放弃,仅在开车考核时进口少量己烯。我国进口的高档LLDPE多为此类产品。预计今后对以1-己烯为单体的LLDPE需求将有较大增长。
(三)、LLDPE的生产工艺概况
1、LLDPE的工艺种类
聚乙烯的生产方法主要有4种:高压法、气相法、溶液法和淤浆法。但目前,世界上生产LLDPE树脂通常采用气相法和溶液法工艺。
在溶液法工艺中,美国Dow Chemical的冷却低压法和加拿大NOVA Chemicals Corporation的中压法占绝对优势。这两种工艺均可切换生产LLDPE和HDPE。
Dow公司的低压溶剂法工艺已用于世界上许多工厂,但这些工厂均属Dow的自有工厂。在此工艺中,乙烯、辛烯-1和C8~C9异构链烷烃溶剂与改性的Ziegler催化剂溶液一起送入两台串联的搅拌反应器。反应在395磅/平方英寸和160℃的条件下进行。第二台反应器溶液中,聚合物的含量为10%。总停留时间为30分钟。反应器的流出物在35磅/平方英寸的绝压下闪蒸,除去溶液中的乙烯。继之,用加热/闪蒸步骤除去溶剂。聚合物则进行挤压造粒。
加拿大NOVA公司的中压SclairTM溶液法工艺系由DuPont Canada开发,在1994年中期,NOVA Chemicals购买了SclairTM技术及其世界技术转让业务,并采用新一代的非茂金属催化剂,开发出了SclairⅡTM技术。
在气相法工艺中,Univation的低压气相流化床工艺,亦即UnipolTM工艺是生产LLDPE的最普通工业化工艺。在此工艺中,乙烯和共聚单体(丁烯-1或己烯-1)在流化床反应器中聚合,生成颗粒状聚合物。其特点是将一种载体型钛或钛-铬催化剂粉末连续送入流化床反应器,并连续地由反应器取出聚合物产品颗粒。在流化床中,增长的聚合物颗粒被循环的乙烯/共聚单体物流流态化。循环物流通过外部冷却器冷却,除去反应热。反应器压力约为300磅/平方英寸,反应温度约为88℃。UnipolTM工艺也可用于生产聚丙烯,采用Shell的超高活性催化剂(SHAC)。
此外,BP的低压气相流化床工艺与UnipolTM工艺非常相似。仅冷凝液送入流化床的方式稍有不同。BP的方法是先将冷凝液与循环物流分离,然后用置于流化床内的喷咀雾化,将其送入流态化床层。UnipolTM则不进行分离,冷凝液随循环物流一起送入流化床反应器。
2、工艺流程
生产LLDPE的工艺流程有多种,现主要介绍气相法和溶液法中两种主要的工艺流程。
1.美国联碳公司(UCC)的Unipol气相法工艺。该工艺与BP气相法工艺大同小异,但UCC产品范围较广,品种较多,采用4种不同的催化剂生产全密度范围分子量分布由窄到宽、熔体指数由0.91g/10min~125g/10min的各种树脂。在各种工艺中,UCC气相法产品范围最广。BP工艺采用一种催化剂生产全密度聚乙烯,熔体指数由0.35/10min~30g/10min,分子量分布窄,当生产宽分子量分布的牌号时,要在挤压造粒时加助剂,但牌号较少。
Unipol PE工艺的装置一般由4部分组成:单体净化、聚合反应、树脂脱气和树脂造粒。工艺流程如图表2 所示。
(1)单体净化 凡进入聚合反应器的单体(包括乙烯和共聚单体)都必须脱除氧、一氧化碳、二氧化碳、水、硫化物、甲醇、炔烃等对催化剂有毒的杂质。常用脱氧及氧化物的催化剂床和分子筛来脱出杂质。
(2)聚合反应 聚合反应在流化床反应器中进行,该反应器下部为圆筒形,上部由一倒锥体和一半球组成。反应器底部有一气体分布板,板上是由粉状树脂形成的流化床层。
催化剂和助催化剂直接从分布板通入反应床层,鼓风机送入循环气使床层保持流化状态,并使反应单体与催化剂均匀混合,同时带走反应热。反应热在循环气冷却器中移出系统。
通过床层的气体质量速度应为3~6倍的Gmf(流化所需最低气流速度)。
分子量调节剂——氢气也和单体一起从反应器底部通入系统。树脂的性能通过催化剂、助催化剂、共聚单体和氢气的加入量来调节。反应停留时间约3小时左右。
(3)树脂脱气 树脂从反应器出来经过特殊的卸料系统脱除未反应的单体;回收了单体的树脂循环到反应器,进入脱气仓,在此仓内进一步脱去树脂中吸附的烃类,从脱气仓下部通入一股吹扫气,与树脂逆流接触,将烃类吹出带走,同时也通入小股脱活剂,将聚合物上残余的活性中心杀死。
(4)造粒 脱气后的树脂经过振动筛等设备除去大块,在进入造粒系统前,先与固、液态添加剂混合。Unipol的造粒系统是由混炼器、熔融泵和造粒机紧密组合成三位一体,与其它工艺的相同系统相比,大约可节省能耗1/3。
用循环软水带走粒状切片,经过干燥分离水,送入料斗,再用空气送到掺混、储运和包装工序。
2.加拿大杜邦中压溶液法(Sclairtech)工艺流程。该工艺是溶液法中生产能力最大、发展最快的一种。1960年杜邦公司在加拿大沙尼亚建立第一套11kt/a的装置,至1990年后,采用该工艺的生产能力已达到720kt/a~780kt/a,其中最大的反应器生产能力为300kt/a。
(1)聚合 乙烯升压后与净化过的循环共聚单体及溶剂(环己烷)一起进入冷却吸收器,在降温的同时充分混合溶解,用进料泵加压达到反应压力10.79~16.67Mpa(110~170kgf/cm2),经温度控制系统达到反应温度(100~300℃),用加入的齐格勒型催化剂的量来控制乙烯转化率达95%左右,用氢来调节熔体指数。用共聚单体量调节聚乙烯密度。采用2个(或更多)反应器,在不同温度和不同氢加入点条件下操作调节产品分子量分布。
在反应器出口加入脱活剂以终止反应,然后使反应物流升温到300℃,通过Al2O3吸附剂吸附脱除催化剂残渣;如采用改进后的新催化剂体系(ACS)则可免去脱催化剂的设施。然后,反应物料进入中压闪蒸器脱除反应乙烯、共聚单体和大部分溶剂。
(2)后处理 熔体脱除单体、溶剂等易挥发物后与固体添加剂混合,进入挤压机和切料机,粒料被循环水带出,脱水后再用热水配成浆液,进一步洗出树脂中的溶剂,然后树脂进入汽提机,经蒸汽逆流汽提后,残留溶剂量小于500mg/L,再进一步干燥,并用热空气送到掺混料仓和包装工序。
(3)溶剂回收 从中压和低压闪蒸器顶部脱出的乙烯、共聚单体和环己烷分别经一、二段冷凝器进入低沸塔,低沸塔顶物料再依次经过乙烯塔和共聚单体塔回收乙烯和共聚单体,低沸塔底物料送到高沸塔和树脂汽提塔处理,从高沸塔顶回收环己烷,从树脂汽提塔底排出油脂状低聚合】物。补充的共聚单体键入共聚单体塔,从该塔侧线还排出异构物2-丁烯。
3、生产LLDPE的成本投入
生产聚乙烯的各种工艺方法,因其反应机理和工艺技术不同,导致生产流程和工艺条件各异,因而在原料和公用工程的消耗上,以及设备台数和材质的要求上均不相同,所以各种装置的投资和成本也有较大的差异。
根据投资和消耗指标,再以一种有代表性的产品牌号为例,对各种工艺的生产成本进行比较,其结果列表于上。从表中可以气相法和中压溶液法的成本最低,淤浆法和低压溶液法次之,高压法成本最高。
在实际的生产经营中,一个生产装置不可能始终生产一个牌号,总要根据市场需求而切换牌号。但切换牌号时,反应器越大、停留时间越长、更换催化剂越多,则不同牌号的过渡料就多,为切换而损失的操作时间也越长,由此而造成产品成本上升的幅度就越大。在这种情况下,气相法料粒的成本升高幅度较大,溶液法和Philips环管法及气相法粉料的成本升高幅度较小,而高压法的产品成本仍居高不下。
4、工艺技术对于LLDPE质量的影响
新技术工艺的发展不仅提高了产品的性能,而且降低了制造成本,促进了聚合物之间的竞争和相互替代。催化剂系统、共催化剂、共聚单体、反应器、聚合介质等方面的改变,影响着聚合物的分子结构,影响树脂的结晶度、支链度、共聚单体分布,以及密度、相对分子质量、相对分子质量分布(MWD)等。这些结构因素又决定着聚合物的最终性能,包括力学强度、光学性能、纯度、流变行为(可加工性)、稳定性(对热、紫外线等)、热性能和电性能。
如用低压工艺生产双峰的宽MWD和LLDPE共聚物和三元共聚物,可以得到加工及性能类似于传统高压LDPE的树脂。
LDPE有较多的支链结构,其中长支链占优势,而LLDPE只有短支链,它们的数目决定聚合物的结晶度和密度。改进加工性能将有利于LLDPE向LDPE的应用领域扩展,进入那些先前由于性能(如透明度、熔体强度等)差别而未能进入的领域。
近几年来,在一些LLDPE生产的新技术中,除了双峰工艺外,最突出的是茂金属、非茂金属单中心催化剂的工艺技术的发展,使得易加工、高性能的LLDPE大量涌现。应用这些新技术开发的LLDPE树脂,被人们称为第二代LLDPE树脂。
从上述情况可知,生产技术工艺先进与否,对产品质量、成本具有决定性影响。目前,我国LLDPE生产技术基本是引进国外上世纪90年代初期以前的工艺,加之消化吸收不够,生产出的产品档次和质量都不高,品种也少,产品杂质较多,质量不均匀,加工性能也较差。因此,国内许多加工企业宁可花高价进口国外料,而不愿用国内同类产品。
鉴于聚乙烯短支链的存在会干扰主链的结晶,因此增加短支链就会破坏结晶和降低密度。均聚的高密度聚乙烯含有极少的短支链,所以它的结晶度高,密度也高。
LLDPE与HDPE虽同属线型聚乙烯,但LLDPE完全是乙烯与α-烯烃共聚而成的。由于LLDPE所含的共聚单体比高密度的共聚物多,因而LLDPE的线型主链上有很多的短支链,致使其结晶度和密度都低;再因其短支链的类别和数目是随不同的共聚单体而异,若共聚单体的碳原子数多,在共聚物中含量也多,则该共聚物的密度下降也大。
(2)热性能 聚乙烯受热以后,随着温度的升高,结晶部分逐渐减少,当结晶部分完全消失时,聚乙烯就融化,此时的温度即为熔点。聚乙烯的密度升高,结晶度升高,其熔点也随之升高,所以密度不同的聚乙烯,其熔点也不同。LLDPE的熔点为120~125℃,介于H P-LDPE与HDPE之间。不同共聚单体的LLDPE,其熔点高低随其共聚单体的碳原子的增减而变动,碳原子数增多熔点升高。由于LLDPE的熔点比H P-LDPE高,故其模型制品可在较高温度下脱模,而且又快又干净。因LLDPE的熔点范围比H P-LDPE窄,故LLDPE的薄膜热封性能好,热合强度也高。
聚乙烯在温度升高时的流动性和在增加荷重时的变化,主要受分子量的影响。由于测定聚乙烯的熔体流动速率比测定分子量容易,因而通常以熔体指数(MI),或熔体流动指数(MFI)来表示聚乙烯的分子量特性。在熔融状态下,聚乙烯的熔体粘度是分子量的函数,它随分子量的增高而加大。当分子量相同时,温度升高则熔体粘度降低。在常温下聚乙烯随密度的不同而有不同的柔韧性。在低温下聚乙烯自然具有良好的柔韧性,其脆析温度较低,这与其分子量有关。当聚乙烯的分子量增高时,其脆化温度下降,其极限值为-140℃。
在分子量相同的情况下,线型结构的LLDPE与HDPE的熔体粘度要比非线型结构的H P-LDPE大。在熔体指数相同的情况下,H P-LDPE的熔体粘度明显低于LLDPE和HDPE,因此,前者加工时的熔体流动性明显好于后两者,螺杆负荷小,发热量也小。
(3)抗环境应力开裂和抗蠕变性能从聚乙烯树脂的实用性来看,抗环境应力开裂(ESCR)性能是重要的物性指标之一。聚乙烯 ESCR性能因支链的增加、密度的降低而得到大大的改善。在3种不同的聚乙烯树脂中,LLDPE的许多性能介于H P-LDPE和HDPE之间,但其ESCR性能却居三者之冠。碳6和碳8高碳α-烯烃共聚的LLDPE,因其支链的增加,其ESCR值明显优于碳4共聚的LLDPE。
(4)热氧老化和光氧老化性能 聚乙烯由于其分子结构上和聚合物中所含的微量杂质等内因,以及受大气环境和成型加工条件等外因的影响,会产生热氧老化和光氧老化。这些老化反应按自由基键式反应机理进行,结果导致聚乙烯发生降解反应为主的不可逆的化学反应,而使其性能变坏乃至完全失去使用价值。
聚乙烯在氧气的存在下受热时易发生热氧老化作用,这种热氧老化过程具有自动催化效应,因此当升高温度时,氧化加速进行,它可使聚乙烯的电绝缘性能变坏。此外,ESCR、伸长率等性能也会降低,并且脆性增加,严重时还会发生特臭气味。氧化作用的影响与受热时间长短有关,例如将高密度聚乙烯制成的容器经短时间受热,其使用价值并无任何降低,如果将其制成的电缆在60℃长时间受热,则其电绝缘性能会显著降低。
聚乙烯受日光中紫外线的照射和空气中氧的作用,使其分子中的羰基含量增加而发生光氧老化作用,这种光氧老化作用是在常温下进行的,它可使聚乙烯分子解聚,并生成一部分支链体型结构。
因此,为了防止或减慢光氧老化的作用,应在聚乙烯中添加具有遮蔽光作用的稳定剂,如炭黑或紫外线吸收剂。聚乙烯在受热成型加工过程中,特别是与大量空气接触的情况下,例如压延过程中或挤出、注射成型时,由于受热氧化而使聚乙烯的机械性能降低,加了抗氧化剂后虽可部分防止,但仍不能完全避免,因此改进聚合工艺及成型加工方法,以及采用改性的方法,可提高聚乙烯受外因作用的稳定性。
(5)聚乙烯的介电性能 纯的聚乙烯不含极性基因,因此具有良好的介电性能。聚乙烯的分子量对其介电性能不发生影响,但聚乙烯中若含有杂质,如催化剂、金属灰分及分子中存在极性基团(羟基、羰基)等,则对其介电性能如介电常数、介电耗损(介电损耗角正切)等会发生不良影响。
在电流频率为50~1×109Hz范围内,聚乙烯的介电常数和介电耗损因数与电流频率无关,因此适合用作高频绝缘材料。聚乙烯的介电性能数据如图表8、9所示。
图表8:聚乙烯的介电性能
介电性能 低密度聚乙烯 高密度聚乙烯
介电常数
10 3 Hz
10 6 Hz
3 × 10 7 Hz
介电损耗角正切
10 3 Hz
10 6 Hz
3 × 10 7 Hz
体积电阻率,∩· cm
介电强度, kV/mm 2.28~2.32
2.28~2.32
2.29
0.0002
0.0003
0.0002
6×10 15
>20 2.34~2.36
2.34~2.38
2.36
0.0002
0.0003
0.0001
6×10 15
>20

图表9:聚乙烯的密度与介电常数
密度, g/cm 3 介电常数 (ASTM D150)
0.920
0.925
0.930
0.935
0.940 2.28
2.29
2.30
2.31
2.32

(6)化学稳定性 聚乙烯具有饱和
脂肪烃的化学性质,因此它是高度稳定和不活泼的。不同密度的聚乙烯所含双键数目和支链数目不同,结晶度也不相同,所以它们的化学稳定性也略有差异。例如,低密度聚乙烯可溶于沸腾的苯中,而高密度聚乙烯在相同的条件下仅为苯溶胀。
(7)物理机械性能 聚乙烯的物理机械性能与它的结晶度(密度)和分子量(熔体指数)有关,因此不同密度的聚乙烯,或相同密度不同熔体指数的聚乙烯,其物理机械性能也各异,如图表10所示。
图表10:聚乙烯的密度与物理机械性能的关系
随密度升高而升高的性能 随密度升高而降低的性能
浊度
拉伸强度
刚性
熔点
介电常数 渗透性 (包括透气性、透湿性和耐油性)
溶解度
伸长率
冲击强度
耐环境应力开裂性

聚乙烯的冲击强度与密度的关系是:密度升高,结晶度升高,冲击强度降低。LLDPE薄膜的冲击强度受共聚单体的影响很大,与1-丁烯共聚的LLDPE薄膜,其冲击强度与H P-LDPE薄膜相当,但与1-己烯和1-辛烯共聚的LLDPE薄膜,其冲击强度则有显著提高。
聚乙烯的透气性与密度的关系是:密度增加晶体阻挡层增加,透气性随之减小。与其它塑料薄膜相比,聚乙烯薄膜对氮、氧、二氧化碳的透气性较大,特别是低密度聚乙烯薄膜的透气性比聚苯乙烯、聚氯乙烯、聚对苯二甲酸乙二酯等薄膜的透气性都大。各种介质对于乙烯的透气性,与其在乙烯中的溶解度有很大关系,一般来说,非极性物质的透气性大于极性物质的透气性。
聚乙烯的伸长率与聚乙烯密度的关系是:密度降低,其非结晶组分增加,使聚乙烯变得更具塑性,因而其伸长率很快提高。
随着聚乙烯密度升高,其结晶组分也增多,结晶区域也扩大。在结晶区域中存在球晶结构,当球晶的大小超过可见光波时,由于可见光的反射而呈现乳白色,因而使聚乙烯的透明度减小,浊度增大。

参考网址 http://blog.china.alibaba.com/blog/yishengrq/article/b0-i2680577.html

  • 缁嗚皥lldpe绉嶇被鍙婄壒鎬
    绛旓細绾垮瀷浣庡瘑搴﹁仛涔欑儻锛 Linear Low-Density Polyethy -lene 锛夛紝鑻辨枃缂╁啓涓LLDPE銆傜嚎鍨嬩綆瀵嗗害鑱氫箼鐑湪缁撴瀯涓婁笉鍚屼簬涓鑸殑浣庡瘑搴﹁仛涔欑儻锛屽洜涓轰笉瀛樺湪闀挎敮閾俱侺LDPE宸叉笚閫忓埌鑱氫箼鐑殑澶у鏁颁紶缁熷競鍦猴紝鍖呮嫭钖勮啘銆佹ā濉戙佺鏉愬拰鐢电嚎鐢电紗銆傛寜鍏辫仛鍗曚綋绫诲瀷锛孡LDPE涓昏鍒掑垎涓3绉嶅叡鑱氱墿锛欳4(涓佺儻-1)銆丆6(宸辩儻-1)鍜孋8(...
  • 濉戞枡鍒嗕粈涔堟潗璐
    绛旓細涓鑸鑳跺師鏂欑殑鐗规(LC濉戣兌鍘熸枡鎵瑰彂,鑰愰珮娓╁鑳舵潗鏂,PPS,LCP,PET,PA,PES濉戣兌鍘熸枡渚涘簲鍟):1)濉戣兌鍘熸枡鍙楃儹鍘嬬缉,绾胯儉绯绘暟姣旈噾灞炲ぇ寰堝;2)涓鑸鑳跺師鏂欑殑鍒氬害姣旈噾灞炰綆涓鏁伴噺绾;3)濉戣兌鍘熸枡鐨勫姏瀛︽ц兘鍦ㄩ暱鏃堕棿鍙楃儹涓嬩細鏄庢樉涓嬮檷;4)涓鑸鑳跺師鏂欏湪甯告俯涓嬪拰浣庝簬鍏跺眻鏈嶅己搴︾殑搴斿姏涓嬫殏鏃跺彈鍔,浼氬嚭鐜版案涔呭舰鍙;5) 濉戣兌鍘熸枡鎵...
  • 鏈熻揣 鍖栧伐鏉垮潡鏈夐偅浜
    绛旓細PTA銆侀儜閱囥佹鑳躲佸鏂欍丳P 绛銆傞檮锛氭垜鍥界粡涓浗璇佺洃浼氱殑鎵瑰噯锛屽彲浠ヤ笂甯備氦鏄撶殑鏈熻揣鍟嗗搧鍙婄壒鎬с佷唬鐮佸涓嬶細
  • lldpe鏄粈涔堟剰鎬(lldpe鏄粈涔堟潗鏂)
    绛旓細2.鐗╃悊鎬ц川涓嶅悓锛氫笌PE鐩告瘮锛孡LDPE鍏锋湁鏇村ソ鐨勫己搴﹀拰寤跺睍鎬ц兘锛屾洿浣庣殑锠曞彉鍜岀儹鏀剁缉銆3.搴旂敤棰嗗煙涓嶅悓锛氱敱浜庝袱绉嶆潗鏂欑殑鐗规т笉鍚岋紝鍥犳瀹冧滑鐨勫簲鐢ㄤ篃涓嶅悓銆侾E閫氬父鐢ㄤ簬鐢熶骇濉戞枡琚嬨佺摱瀛愩佺閬撳拰鍖呰鏉愭枡锛岃孡LDPE鍒欐洿閫傜敤浜庣敓浜ц杽鑶溿佸鍣ㄥ拰浜洪犺崏鍧瓑浜у搧銆傚湪鐢熶骇鍜屽簲鐢ㄤ腑锛孭E鍜孡LDPE涔熸湁鐩镐簰浣滅敤鐨勫鍚堜骇鍝佸嚭...
  • 扩展阅读:爱情三角理论 ... 5种身型分析图 ... pe hdpe ... 健身三大项合格标准表 ... 三大项标准对照表 ... lldpe最新价格 ... 数据分析20种图表 ... lldpe图片 ... 女人的体型分类 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网