设二维随机变量(x,y)服从x^2+y^2<=R^2上的均匀分布,求点(x,y)到圆心的距离的数学期望 设二维随机变量(X,Y)服从单位圆上的均匀分布, 则P(X^...

\u4e3a\u4ec0\u4e48fX(x)\u7684\u5b9a\u4e49\u57df\u662f-R<x<R\uff1a\u8bbe\u4e8c\u7ef4\u968f\u673a\u53d8\u91cf(X,Y)\u670d\u4ece\u5706\u57dfG:x^2+y^2\u2264R^2\u4e0a\u7684\u5747\u5300\u5206\u5e03\uff0c\u6c42\u5173\u4e8eX\u4ee5\u53ca\u5173

\u8fd9\u662f\u4e2a\u9762\u79ef\u4e3a\u03c0R^2\u7684\u5706\u5f62\uff0c\u5747\u5e03\u5728\u5706\u5185(dx dy)\u7684\u6982\u7387\u503c\u4e3a1/\u03c0R^2\u3002 \u5982\u679c\u6c42\u8fb9\u7f18\u5206\u5e03\u7684\u8bdd\uff0c\u4e5f\u5c31\u662f\u6c42f(x)\u548cf(y)\uff0c\u7531\u5bf9\u79f0\u6027\u53ef\u770b\u51fa\u5b83\u4fe9\u5f62\u5f0f\u4e00\u6837 f(x) \u7684\u503c\u57df\u662f-1\u52301, \u800c\u5bf9\u5e94\u4e00\u4e2a\u786e\u5b9ax\u7684y\u7684\u503c\u57df\u662f(-sqrt(1-x^2),sqrt(1-x^2)) \u6240\u4ee5f(x) = 2sqrt(1-x^2)

P=S\u5c0f\u5706/S\u5355\u4f4d\u5706=\uff081/2\uff09\u5e73\u65b9\u5140/1\u5e73\u65b9\u5140=1/4
^\u7531\u9898\u610f\u77e5\uff1aX^2+Y^2=1\uff0c\u6240\u4ee5\u53ef\u8bbe\uff1aX=cos\u03b8\uff0cY=sin\u03b8\uff0c\u03b8\u4e3a[-\u03c0\uff0c\u03c0]\u4e0a\u5747\u5300\u5206\u5e03\u7684\u968f\u673a\u53d8\u91cf\u3002
E(X)=(1/2\u03c0)\u222b(-\u03c0\u2192\u03c0)cos\u03b8d\u03b8=0\uff1b
E(Y)=(1/2\u03c0)\u222b(-\u03c0\u2192\u03c0)sin\u03b8d\u03b8=0\uff1b
E(X^2)=(1/2\u03c0)\u222b(-\u03c0\u2192\u03c0)(cos\u03b8)^2d\u03b8=1/2\uff1b
E(Y^2)=(1/2\u03c0)\u222b(-\u03c0\u2192\u03c0)(sin\u03b8)^2d\u03b8=1/2\uff1b
D(X)=E(X^2)-[E(X)]^2=1/2\uff1b
D(Y)=E(Y^2)-[E(Y)]^2=1/2\uff1b
E(XY)=(1/2\u03c0)\u222b(-\u03c0\u2192\u03c0)cos\u03b8sin\u03b8d\u03b8=0\uff1b
\u534f\u65b9\u5deeCov(X\uff0cY)=E(XY)-E(X)E(Y)=0\uff1b \u6240\u4ee5\uff0c\u76f8\u5173\u7cfb\u6570\u03c1XY=Cov(X\uff0cY)/[(\u221aD(X))(\u221aD(Y))]=0\uff1b\u6240\u4ee5X\u3001Y\u4e0d\u76f8\u5173\uff1b \u53e6\u5916\uff0c\u663e\u7136\u6709P{0\uff1cX\uff1c1/2}\u22600\uff0c P{0\uff1cY\uff1c1/2}\u22600\uff1b
\u6240\u4ee5\uff1aP{0\uff1cX\uff1c1/2}P{0\uff1cY\uff1c1/2}\u22600\uff0c \u4f46\u662f\uff0c0\uff1cX\uff1c1/2\u548c0\uff1cY\uff1c1/2\u540c\u65f6\u53d1\u751f\u7684\u6982\u7387\u4e3a\u96f6\uff0c\u5373\uff1aP{0\uff1cX\uff1c1/2\uff0c0\uff1cY\uff1c1/2}=0\uff0c \u6240\u4ee5P{0\uff1cX\uff1c1/2\uff0c0\uff1cY\uff1c1/2}\u2260P{0\uff1cX\uff1c1/2}P{0\uff1cY\uff1c1/2}\uff0c\u6240\u4ee5X\u3001Y\u4e0d\u72ec\u7acb\u3002

\u6269\u5c55\u8d44\u6599\uff1a
\u4e00\u822c\uff0c\u8bbeE\u662f\u4e00\u4e2a\u968f\u673a\u8bd5\u9a8c\uff0c\u5b83\u7684\u6837\u672c\u7a7a\u95f4\u662fS={e}\uff0c\u8bbeX=X\uff08e\uff09\u548cY=Y(e)S\u662f\u5b9a\u4e49\u5728S\u4e0a\u7684\u968f\u673a\u53d8\u91cf\uff0c\u7531\u5b83\u4eec\u6784\u6210\u7684\u4e00\u4e2a\u5411\u91cf\uff08X\uff0cY\uff09\uff0c\u53eb\u505a\u4e8c\u7ef4\u968f\u673a\u53d8\u91cf\u6216\u4e8c\u7ef4\u968f\u673a\u5411\u91cf\u3002
\u6709\u4e00\u4e2a\u73ed\uff08\u5373\u6837\u672c\u7a7a\u95f4\uff09\u4f53\u68c0,\u6307\u6807\u662f\u8eab\u9ad8\u548c\u4f53\u91cd,\u4ece\u4e2d\u4efb\u53d6\u4e00\u4eba\uff08\u5373\u6837\u672c\u70b9\uff09,\u4e00\u65e6\u53d6\u5b9a,\u90fd\u6709\u552f\u4e00\u7684\u8eab\u9ad8\u548c\u4f53\u91cd\uff08\u5373\u4e8c\u7ef4\u5e73\u9762\u4e0a\u7684\u4e00\u4e2a\u70b9\uff09\u4e0e\u4e4b\u5bf9\u5e94,\u8fd9\u5c31\u6784\u9020\u4e86\u4e00\u4e2a\u4e8c\u7ef4\u968f\u673a\u53d8\u91cf\u3002\u7531\u4e8e\u62bd\u6837\u662f\u968f\u673a\u7684,\u76f8\u5e94\u7684\u8eab\u9ad8\u548c\u4f53\u91cd\u4e5f\u662f\u968f\u673a\u7684,\u6240\u4ee5\u8981\u7814\u7a76\u5176\u5bf9\u5e94\u7684\u5206\u5e03\u3002
\u53c2\u8003\u8d44\u6599\u6765\u6e90\uff1a\u767e\u5ea6\u767e\u79d1-\u4e8c\u7ef4\u968f\u673a\u53d8\u91cf

应该是R/2吧
可以这样想:
一条线段,端点为(0,0)和(R,0),这条线段上所有点到原点的距离的期望,是R/2.(每一个点都能在线段上找到一个关于(R/2,0)对称的点,即这一对点到原点的平均距离为R/2,所有点都是这样的)
紧接着,把这条线段复制无限次,旋转排布,变成圆。
结论依然同上,期望是R/2

(x,y)与圆心距离为:d=√(x²+y²)
E(d)=1/(πR²)∫∫ √(x²+y²) dxdy
极坐标
=1/(πR²)∫∫ r² drdθ
=1/(πR²)∫[0→2π]dθ∫[0→R] r² dr
=(2/R²)(1/3)r³ |[0→R]
=(2/3R³)/R²
=2R/3

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。

解法如下:
根据题意:概率密度f(x,y)=1/πR^2 -R< x<R, -R< y<R,
f(x,)=0 其他

点(x,y)到圆心的距离:
L=√x^2+y^2
E(L)=∫(-∞,+∞)√x^2+y^2f(x,y)dxdy
=∫∫(-∞,+∞)√x^2+y^2f(x,y)dxdy
=∫∫(-∞,+∞)√x^2+y^2f(x,y)dxdy 转化为极坐标积分:r==√x^2+y^2
=∫(0,2π)dθ∫(0,R)(r^2/πR^2)dr
=2R/3

(x,y)与圆心距离为:d=√(x²+y²)
E(d)=1/(πR²)∫∫ √(x²+y²) dxdy
极坐标
=1/(πR²)∫∫ r² drdθ
=1/(πR²)∫[0→2π]dθ∫[0→R] r² dr
=(2/R²)(1/3)r³ |[0→R]
=(2/3R³)/R²
=2R/3

距离为R,圆心为坐标原点,则服从X^2+Y^2=R^2

  • 璁句簩缁撮殢鏈哄彉閲(X,Y)鏈嶄粠鍖哄煙G={(X,Y)|0鈮鈮2,0鈮鈮2}涓婄殑鍧囧寑鍒嗗竷...
    绛旓細銆愮瓟妗堛戯細瑙佽В鏋 瑙f瀽锛(X,Y)鐨勮仈鍚堟鐜囧瘑搴︿负 f(x,y)=1/2,0<=x<=2,0<=y<=1 0,鍏朵粬 P(X<=Y)=鈭埆X<=Y f(x,y)dxdy=(1/2)鈭埆dxdy=(1/2)(鐭╁舰G涓弧瓒砐<=Y鐨勯潰绉)=1/4 P(x>Y)=鈭埆X>Y f(x,y)dxdy=1/2(鐭╁舰G涓弧瓒砐>Y鐨勯潰绉)=3/4 鍚岀悊 P(X<=2Y)=...
  • 璁句簩缁撮殢鏈哄彉閲(X,Y )鏈嶄粠浜岀淮姝f佸垎甯僋(0,0,1,1,0)姹侾(X/Y<0)
    绛旓細=0.5脳0.5+0.5脳0.5 =0.5 浜岀淮闅忔満鍙橀噺( X,Y)鐨勬ц川涓嶄粎涓X 銆Y 鏈夊叧,鑰屼笖杩樹緷璧栦簬杩欎袱涓殢鏈哄彉閲忕殑鐩镐簰鍏崇郴銆傚洜姝わ紝閫愪釜鍦版潵鐮旂┒X鎴朰鐨勬ц川鏄笉澶熺殑锛岃繕闇灏嗭紙X锛孻锛変綔涓轰竴涓暣浣撴潵鐮旂┒銆
  • 璁句簩缁撮殢鏈哄彉閲(X,Y)鏈嶄粠鍦ㄥ尯鍩烡涓婄殑鍧囧寑鍒嗗竷
    绛旓細锛2锛塒锛坾x|锛測锛=1/4銆傦紙3锛塮锛坸锛寉锛鈮爁锛坸锛塮锛坹锛夛紝鎵浠锛寉涓嶇嫭绔嬨
  • 璁句簩缁撮殢鏈哄彉閲(X,Y)鏈嶄粠浜岀淮姝f佸垎甯(1,-1;4,9;0),鍒橢(X^2Y^2)=
    绛旓細瑙o細鈭 锛坸锛寉锛~N锛0锛0锛1锛1锛0锛夆埓X~N(0,1)锛孻~N(0,1)涓擷涓嶻鐙珛 鈭礨/Y<0锛屽嵆X涓嶻鍙嶅彿 鈭 P锛圶/Y<0锛塃(X)=1 D(X)=4 E(X^2)=D(X)+E(X)^2=5 E(Y)=1 D(Y)=9 E(Y^2)=D(Y)+E(Y)^2=10 鈭碋(X^2Y^2)=E(X^2)E(Y^2)=50 ...
  • 璁句簩缁撮殢鏈哄彉閲(X,Y)鏈嶄粠鍖哄煙D:0鈮鈮4,0鈮鈮4涓婂潎鍖鍒嗗竷,鍒橢(X...
    绛旓細鍏堝啓鍑鸿仈鍚堟鐜囧瘑搴︼紝濂楀叕寮忚〃绀烘暟瀛︽湡鏈涳紝瑙d簩閲嶇Н鍒
  • 璁句簩缁撮殢鏈哄彉閲(X,Y)鏈嶄粠N(渭,渭,蟽2,蟽2,0),鍒橢(XY2)=___
    绛旓細绠鍗曞垎鏋愪竴涓嬶紝璇︽儏濡傚浘鎵绀
  • 浜岀淮闅忔満鍙橀噺X-Y鏈嶄粠姝f佸垎甯冨悧?
    绛旓細璇佹槑锛璁句簩缁撮殢鏈哄彉閲忥紙X锛孻锛夋湇浠浜岀淮姝f佸垎甯僋锛0,0,1,1锛宲锛夛紝鍒橷-Y鏈嶄粠姝f佸垎甯僋锛0,2锛1-p)锛.X-Y鐨勫潎鍊煎拰鏂瑰樊鍙敤濡備笅鏂规硶姹傝В锛欵(X-Y)=E(X)-E(Y)=0-0=0,Var(X-Y)=Var(X)+Var(Y)-2Cov(X,Y)=1+1-2p=2(1-P),浣嗘槸濡備綍璇乆-Y鏈嶄粠姝f佸垎甯冨憿锛燂紵锛
  • 璁句簩缁撮殢鏈哄彉閲(X,Y)鏈嶄粠浜岀淮姝f佸垎甯,涓µ1=0,渭2=0,蟽1=1,蟽2=...
    绛旓細浣犲ソ锛佺敱浜庣浉鍏崇郴鏁颁负0锛岃繖涓や釜姝f佸垎甯冩槸鐩镐簰鐙珛鐨勶紝e(x)=1,d(x)=4,e(x^2)=d(x)+e(x)^2=5锛宔(y)=1,d(y)=9,e(y^2)=d(y)+e(y)^2=10锛屾墍浠(x^2y^2)=e(x^2)e(y^2)=50銆傜粡娴庢暟瀛﹀洟闃熷府浣犺В绛旓紝璇峰強鏃堕噰绾炽傝阿璋紒
  • 璁句簩缁撮殢鏈哄彉閲(X,Y)鏈嶄粠鍖哄煙?
    绛旓細鈭碭銆乊鐨勮竟缂樺垎甯冨瘑搴﹀嚱鏁板垎鍒负锛宖X(x)=鈭(0,2)f(x,y)dy=1锛0<x<1锛宖X(x)=0锛寈涓哄叾瀹冦俧Y(y)=鈭(0,1)f(x,y)dx=1/2,0<y<2锛宖Y(y)=0锛寉涓哄叾瀹冦傝岋紝Z=min(X,Y)銆傚綋Y鈮鏃讹紝Z=X銆傗埓鍏跺瘑搴﹀嚱鏁癴(z)銆=fX(x)銆=1锛0<z<1锛宖Z(z)=0锛寊涓哄叾瀹冦傚綋Y<X鏃...
  • 璁句簩缁撮殢鏈哄彉閲(X,Y)鍦ㄥ崟浣嶅渾鍐鏈嶄粠鍧囧寑鍒嗗竷,璇曢棶X,Y鏄惁鐙珛
    绛旓細鐢遍鎰忕煡:X^2+Y^2=1锛屾墍浠ュ彲璁: X=cos胃锛孻=sin胃锛屛镐负[-蟺锛屜]涓婂潎鍖鍒嗗竷鐨闅忔満鍙橀噺銆侲(X)=(1/2蟺)鈭(-蟺鈫捪)cos胃d胃=0锛 E(Y)=(1/2蟺)鈭(-蟺鈫捪)sin胃d胃=0锛汦(X^2)=(1/2蟺)鈭(-蟺鈫捪)(cos胃)^2d胃=1/2锛汦(Y^2)=(1/2蟺)鈭(-蟺鈫捪)(sin胃)...
  • 扩展阅读:设随机变量x~n(0 ... 设随机变量x~n(μ ... 1) ... σ2) ... 随机变量x~n(1 ... 随机变量x~u(0 ... 4) ... 服从二维正态 ... 函数生成器 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网