SCR脱硝催化剂循环再利用的研究进展?

指出了催化剂是选择性催化还原(SCR)脱硝系统的核心,催化剂的寿命直接关系着SCR脱硝系统的运行成本,分析了SCR反应过程催化剂失活的各项因素,并针对特定的失活原因,详细阐述了失活SCR催化剂再生技术的原理和特点,就现行应用于废弃含钒催化剂提取钒的工艺进行了探讨。
1 引言
燃煤电厂排放的氮氧化物(NOx)是主要大气污染物之一,也是形成光化学烟雾、酸雨污染及破坏臭氧层的主要物质。如何有效控制NOx排放已成为当前环境保护中令人关注的重要课题[1]。而在众多的脱硝技术中,选择性催化还原法(Selective Catalytic Reduction,SCR)以其无副产物,装置简单并且脱除效率高(可达90%以上)、运行可靠、便于维护等优点,已成为现阶段世界上应用最为广泛的烟气脱硝技术。
采用SCR技术的关键问题是选择优良的催化剂,它的性能直接影响到SCR系统的整体脱硝效果。经过多年的工业实践和验证,目前广泛使用的是以锐钛矿型二氧化钛为载体负载钒氧化物作为活性物质,辅以氧化钨或氧化钼为助催化剂的金属氧化物催化剂。
目前,用于燃煤电厂烟气脱硝的钒基催化剂的工作温度范围为310~430 ℃,相当于锅炉省煤器出口的烟气温度。因此SCR脱硝反应器直接安装在锅炉省煤器与空气预热器之间,即所谓的高位布置方式[2]。尽管这种布置方式下催化剂活性最大,有利于反应的进行,但该布置区间烟气中高浓度的粉尘会冲刷催化剂并使其中毒,同时烟气温度过高使得催化剂发生烧结、失活,使催化剂的寿命缩短。
当催化剂的活性下降致使其性能劣化到一定程度时,就要更换催化剂,在运行费用中除了氨的消耗,催化剂的更换更是占据了大部分费用。对于可逆性中毒的催化剂和活性降低的催化剂可以通过再生重新利用,再生费用只有全部更换费用的20~30%,而活性可恢复到原来的90%~100%,甚至更高[3]。
此外,不可再生的废弃SCR脱硝催化剂中含有钒等有价金属,直接丢弃会造成环境污染,其中钒是稀有金属,在自然界中分散而不集中,富集钒矿不多,提取和分离比较困难。近几年随着科技的发展,对钒需求量每年约增长5%,致使钒价不断上扬。因此,从废弃SCR脱硝催化剂中回收V2O5既能避免对环境的污染,又能节约宝贵的资源。
2 SCR催化剂的失活机理
在SCR系统运行过程中,导致SCR催化剂活性降低乃至失活的原因主要有以下几种[4,5]。
2.1 高温引起的烧结、活性组分挥发
温度对于SCR催化剂活性有较大的影响,对于V2O5-WO3/TiO2催化剂的热力型失活也有相关的研究,长时间暴露于450 ℃以上的高温环境中可引起催化剂活性位置(表面)烧结,直接导致催化剂颗粒增大,表面积减小,一部分活性组分的挥发损失,进而使催化剂活性降低。
Reiche等人[6]研究了V2O5 /TiO2在不同温度下的活性变化,结果发现当温度高于500℃时催化剂将严重失活。Moradi等人[7]的研究结果表明,催化剂失活过程中,外部环境温度是一个重要的参数。当外界环境温度升高时,亚微观粒子在催化剂失活中的作用将被加强。
2.2 碱金属、碱土金属氧化物引起的催化剂中毒
飞灰中的可溶性碱金属主要包括Na与K这两种物质,在水溶液离子状态下,它们能够渗透到催化剂深层直接与催化剂活性颗粒反应,使酸位中毒以降低其对NH3的吸附量和吸附活性,继而降低催化活性[8]。
碱金属元素被认为是对催化剂毒性最大的一类元素,因此碱金属中毒本质成为探讨的焦点。Kamata等[9]通过脱硝活性实验证实,随着催化剂表面K2O含量的增加,NO转化率急剧下降,当K2O质量分数达到1%时,催化剂活性几乎完全丧失。
他们还利用DRFIT等方法分析得到了催化剂钾中毒机理:K2O存在使得SCR催化剂活性位之一的Bronsted酸性活性位的数量大大减少,同时也削弱了Bronsted酸性位的酸性,但是随着SCR催化剂表面K2O含量的增加,另一种活性位Lewis酸性位的数量几乎不发生变化,这说明SCR催化剂钾中毒后,活性的下降是由Bronsted酸性位的变化引发的。
另外,碱金属物质的增加,会使载体氧化物的pH值增大,在高温的烧结下,会使催化剂晶型改变而造成结构坍塌,堵塞内孔而导致活性降低。因此,若烟气中K2O、Na2O的含量增加,则催化剂的失活现象就更严重[10]。朱崇兵等[11,12]利用模拟中毒法使得V2O5-WO3/TiO2催化剂中毒,通过检测中毒后催化剂的脱硝活性,比较了相同摩尔比的碱金属氧化物中毒条件下催化剂的失活程度,得到如下结论:
碱金属氧化物与催化剂表面V物种的结合生成部分碱金属盐(如KVO3、NaVO3),改变了催化剂的表面结构,使催化剂中有效活性位的数量大大降低,从而导致催化剂活性降低。两种碱金属氧化物对催化剂的毒性顺序为K2O>Na2O。 碱土金属元素(Ca、Mg)对于SCR催化剂的影响主要表现在氧化物在催化剂表面的沉积并进一步发生反应而造成孔结构堵塞。
Benson等[13]对催化剂表面XRD的检测结果表明,催化剂表面沉积的碱土金属化合物主要为CaSO4,其余为Ca3Mg(SiO4)2和CaCO3,其中CaSO4和CaCO3是由CaO分别与SO3和CO2反应得到的。Nicosia等[14]通过NH3-TPD和DRFIT的测量证实,Ca也能够和K一样,影响Bronsted酸性位和V5+ O上NH3的吸附,而对于Lewis酸性位则几乎没有任何影响,但在同摩尔分数下Ca的影响比K小。
2.3 非金属氧化物引起的催化剂中毒
砷(As)是大多数煤种中都存在的成分,SCR催化剂的砷中毒是由气态砷的化合物扩散进入催化剂表面及堆积在催化剂小孔中,然后在催化剂的活性位置与其他物质发生反应,引起催化剂活性降低。烟气中气态砷的主要形态为As2O3,在SCR催化剂所处的温度区间会部分生成As3O5或As4O6[5]。Hans等[16]通过ESEM照片显示,As2O3主要沉积并堵塞催化剂的中孔,即孔径在0.1~1.0μm之间的孔。
磷与砷同属于VA族的元素,存在于烟气中磷化合物主要以P2O5的形式存在,P2O5不是机械地固定在催化剂的表面上的,而是也通催化剂的活性组分进行化学反应,从而导致SCR催化剂钝化。Kamata等[17]考察了不同P2O5负载量下催化剂脱硝活性的变化,并通过表征手段对SCR催化剂的磷中毒机理进行深入研究。
结果表明,催化剂的活性随着P2O5负载量的增加而下降,但相比碱金属的影响则要小很多,磷致催化剂中毒机理被认为是P取代了V-OH和W-OH中的V和W,生成了P-OH基团,P-OH的酸性不如V-OH和W-OH,减少了Bronsted酸性位的数量,致使催化剂的脱硝活性下降。
2.4 烟气中其他成分导致的催化剂失活
飞灰成分复杂,它的组成与性质因燃煤品种、燃烧温度及燃烧方式不同而变化,其中除了含有大量碱金属、碱土金属、P、As主要毒性氧化物外,还含有一定量的铁、铅、硅等游离氧化物,这些游离氧化物同样能够与活性位发生作用而使催化剂钝化。
此外,烟气中的HCl气体对SCR催化剂也有一定的毒害作用,表现在一方面,在烟气温度低于340℃时,HCl会与NH3反应,生成NH4Cl黏附在催化剂表面,致使活性位与烟气接触的表面积下降;另一方面,催化剂表面上的氯离子会与V结合生成VCl2和VCl4,从而破坏了催化剂的活性位。
2.5 催化剂的堵塞与机械磨损
造成催化剂堵塞的主要是飞灰的小颗粒及反应过程中形成的铵盐,它们沉积在催化剂表面的小孔中,阻碍NOx、NH3和O2达到催化剂活性位,引起催化剂钝化。另外,在催化剂的安装、更换过程中,不可避免地要冲击催化剂;并且由于SCR反应器中的催化剂垂直布置,烟气自反应器顶部垂直向下平行催化剂流动,在较大气速下,烟气中的大颗粒物质会对催化剂造成较大磨损。
3 SCR催化剂循环再利用技术
3.1 SCR催化剂的再生技术
对采用SCR技术的燃煤电站而言,催化剂中毒失活不仅会增加SCR系统的运行成本,同时也会带来不可忽视的环境问题。考虑到催化剂的运行成本和催化剂处置的难度,催化剂再生是处理催化剂的首选方法[18]。 3.1.1 水洗再生 通过压缩空气冲刷去除催化剂表明的浮尘,然后用去离子水冲洗以清洗和溶解与催化剂表明结合的尘土及盐分子,再用空气干燥。
此方法简单有效,可以冲洗溶解性物质以及冲刷掉催化剂表面部分颗粒物,可以比较明显提高催化剂的脱硝效率,用此方法处理的催化剂活性能从50%恢复到83%左右[19]。水洗再生对碱金属中毒的催化剂基本是有效的,但仍然有报道一些商业SCR催化剂碱金属中毒后采用水浸泡后溶液中检测不到碱金属[20]。
3.1.2 酸、碱液处理再生
酸液处理催化剂再生报道常用于催化剂金属氧化物中毒后的再生。一般是将中毒后的催化剂在一定浓度的酸溶液中浸泡若干时间,再用清水洗涤至pH值接近7,将处理好的催化剂在低于100℃的温度下干燥[21]。有研究者[20,22]通过实验证明:硫酸处理再生比单纯的水洗再生更有效,酸洗再生后K2O得以完全清除。同时在催化剂表面引入了SO2-4,使其再生后催化剂的脱硝活性在350~500℃内高于中毒前。
Foerster研究了Fe2O3对V2O5-WO3/TiO2催化剂的毒化作用,并考察了酸洗处理对催化剂的再生效果。研究发现,由于Fe2O3对SO2具有催化氧化作用,Fe2O3的添加导致催化剂SO2的氧化率不断提高,而脱硝活性下降。使用含有一定量抗氧化剂和表面活性剂的酸液处理后,Fe2O3得以完全清除,脱硝活性可恢复到原来的95%~100%,SO2氧化率得到很好抑制[23]。
酸碱组合式处理催化剂再生,用于催化剂非金属氧化物(As2O3、P2O5)中毒后的再生。其过程与酸洗再生过程类似,先将中毒的催化剂置于一定浓度的碱溶液中浸泡若干时间,随后过剩的的碱用无机或有机酸进行中和处理,将处理好的催化剂干燥后用活性元素的水溶性化合物进行浸渍。研究表明[24,25],利用酸碱组合式处理方法对As2O3、P2O5中毒SCR催化剂进行再生,能有效去除毒性物质,再生后的催化剂在SCR反应中表现出很高的脱硝活性。
3.1.3 SO2酸化热再生
金属氧化物中毒的SCR催化剂也可用SO2酸化热再生。将已经钝化的催化剂在去离子水中清洗,在100℃条件下烘干1h,然后置于SO2气体中于350~420℃温度条件下煅烧,实现催化剂活性恢复。离子水的预先处理对于催化剂的再生作用明显。SO2酸化热再生与酸液再生的原理相同,都在于提高催化剂表面的酸位点。
Zheng等[26]采用SO2酸化热再生方法对钾中毒SCR催化剂进行处理。活性测试实验结果表明,催化剂在250~450℃时的脱硝效率已达到中毒前的50%~72%。 3.1.4 热(还原)再生 在惰性保护气体氛围下,以一定速率升高催化剂温度,保持一段时间,然后降温,整个过程惰性气体可以防止氧化等反应发生。
热再生主要可以分解积累在催化剂表面吸附的铵盐,可将催化剂表面吸附的铵盐分解形成SO2。热还原再生过程与热再生过程类似,在惰性气体中混合一定比例的还原性气体,在高温环境中利用还原性气体与催化剂表面与金属结合的硫酸盐发生反应,实现催化剂的脱硫再生过程。文献[27]报道对V2O5/AC催化剂,以Ar气为载气热再生和以5%NH3-95%Ar热还原再生过程进行比较,发现热还原再生过程效果优于热再生过程。
3.2 废钒催化剂提取钒工艺
当SCR催化剂化学性能下降,可通过上述再生方法使其恢复,但如果原有物理结构发生不利变化,则很难再生处理。出于对环境效益和社会效益的考虑,需对废弃SCR催化剂进行处理。钒催化剂经使用后,其中的钒主要以V2O5和VOSO4形式存在,后者所占比例有时可达40%~60%。
这主要取决于催化剂在转化器中所处位置和使用时间的长短,废钒催化剂中的VOSO4可溶于水,而V2O5难溶于水,但却易于强酸或强碱。从废钒催化剂中提取V2O5有多种方法,虽然其工艺流程和操作条件不尽相同,但关键的步骤是钒的浸出和从浸出液中沉淀出V2O5来,具有代表性的有以下几种。
(1)还原浸出-氧化沉钒法。该法将废钒催化剂加水加热煮沸,并加入二氧化硫或亚硫酸钠还原,使V2O5还原成四价钒呈硫酸钒酰形态进入溶液,然后加入氧化剂氯酸钾氧化沉钒。
(2)酸性浸出-氧化沉钒法。用盐酸或硫酸溶液升温浸出,同时加入氧化剂氯酸钾氧化四价钒为五价钒,V2O5的浸出率可达95%~98%,再用碱溶液调节pH值,煮沸溶液得到V2O5沉淀。
(3)碱性浸出-沉钒法。由于V2O5为二性氧化物,可采用酸液浸取也可采取碱液加以浸取回收。用NaOH或碳酸钠溶液在90℃下浸出,溶液过滤后调整pH值1.6~1.8,煮沸得到V2O5沉淀。碱浸法V2O5的回收率与酸法相当,但通常碱法回收的V2O5纯度不如酸法。
(4)高温活化法。将废钒催化剂直接进行高温活化,焙烧时不加任何添加剂,然后用碳酸氢钠浸出,同时加入少量氯酸钾氧化溶液中四价钒为五价钒,过滤、浓缩浸出液,再加入氯化铵使钒以偏钒酸铵形式沉淀,干燥、煅烧得到五氧化二钒产品[28]。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

  • SCR鑴辩鍌寲鍓傚惊鐜啀鍒╃敤鐨勭爺绌惰繘灞?
    绛旓細浠栦滑杩鍒╃敤DRFIT绛夋柟娉曞垎鏋愬緱鍒颁簡鍌寲鍓傞捑涓瘨鏈虹悊:K2O瀛樺湪浣垮緱SCR鍌寲鍓娲绘т綅涔嬩竴鐨凚ronsted閰告ф椿鎬т綅鐨勬暟閲忓ぇ澶у噺灏,鍚屾椂涔熷墛寮变簡Bronsted閰告т綅鐨勯吀鎬,浣嗘槸闅忕潃SCR鍌寲鍓傝〃闈2O鍚噺鐨勫鍔,鍙︿竴绉嶆椿鎬т綅Lewis閰告т綅鐨勬暟閲忓嚑涔庝笉鍙戠敓鍙樺寲,杩欒鏄嶴CR鍌寲鍓傞捑涓瘨鍚,娲绘х殑涓嬮檷鏄敱Bronsted閰告т綅鐨勫彉鍖栧紩鍙戠殑銆傚彟澶,纰...
  • 鍚挕SCR鑴辩鍌寲鍓杩愯鍚庣殑鍐嶇敓鐮旂┒?
    绛旓細鏈枃浠ユ煇鐢靛巶杩愯鍚庣殑鍚挕鍨SCR鑴辩鍌寲鍓涓虹爺绌跺璞,鍒嗘瀽鍏舵椿鎬т笅闄嶇殑鍘熷洜,閲囩敤姘㈡哀鍖栭挔-鏌犳閰歌仈鍚堟竻娲椼佺█纭吀娓呮礂鍜岀~閰搁摰婧舵恫娓呮礂3绉嶄笉鍚岀殑鏂规硶瀵硅繍琛屽悗鐨勫偓鍖栧墏杩涜鍐嶇敓,鍒╃敤涓绯诲垪鐨勮〃寰佹墜娈垫帰绌跺偓鍖栧墏鍐嶇敓鍓嶅悗鐗╃悊鍖栧鎬ц川鐨勬敼鍙樻儏鍐,瀵规瘮涓嶅悓鏂规硶鐨勫啀鐢熸晥鏋,鎺㈢┒鍏跺啀鐢熸満鐞,浠ユ湡涓SCR鍌寲鍓傜殑娲绘ф仮澶嶄笌寰幆浣...
  • SCR鑴辩鏄爺绌朵粈涔
    绛旓細SCR锛岄夋嫨鎬鍌寲杩樺師鑴辩鎶鏈紝鍦ㄤ竴瀹氱殑娓╁害鍖洪棿鍐咃紝閫氳繃鍌寲鍓鐨勫偓鍖栦綔鐢紝浣縉H3涓庣儫姘斾腑鐨凬Ox鍙戠敓杩樺師鍙嶅簲锛岀敓鎴愭棤瀹崇殑N2锛屼粠鑰屽疄鐜拌劚闄ゆ薄鏌撶墿鐨勪竴绉嶇儫姘斿噣鍖栨妧鏈傜洰鍓嶈鎶鏈摱棰堝氨鍦ㄦ俯搴﹁姹備笌鍌寲鍓傝愮~鎬т笂銆
  • SCR鑴辩鎶鏈
    绛旓細涓栫晫涓婃祦琛岀殑SCR宸ヨ壓涓昏鍒嗕负姘ㄦ硶SCR鍜屽翱绱犳硶SCR2绉嶃傛2绉嶆柟娉曢兘鏄鍒╃敤姘ㄥNOx鐨勮繕鍘熷姛鑳 ,鍦鍌寲鍓傜殑浣滅敤涓嬪皢 NOx (涓昏鏄竴姘у寲姘)杩樺師涓哄澶ф皵娌℃湁澶氬皯褰卞搷鐨勬爱姘斿拰姘 ,杩樺師鍓備负姘ㄦ皵銆備竴绫绘槸浠庢簮澶翠笂娌荤悊锛屾帶鍒剁厖鐑т腑鐢熸垚NOx锛屽叾鎶鏈帾鏂斤細1銆侀噰鐢ㄤ綆姘噧鐑у櫒銆2銆佸垎瑙g倝鍜岀閬撳唴鐨勫垎娈电噧鐑э紝鎺...
  • 鍥藉唴鍝釜楂樻牎鍋鑴辩鍌寲鍓鍐嶇敓姣旇緝濂
    绛旓細鍥藉唴鏈変簺楂樻牎鎶鏈笉澶垚鐔燂紝浣嗘槸涔熸湁鍋氱殑涓嶉敊鐨勶紝姣斿娴欐睙澶у銆佹竻鍗庡ぇ瀛︾瓑銆鑴辩鍌寲鍓娉涙寚搴旂敤鍦ㄧ數鍘SCR锛坰elective catalytic reduction锛夎劚纭濈郴缁熶笂鐨勫偓鍖栧墏锛圕atalyst锛夛紝鍦⊿CR鍙嶅簲涓紝淇冧娇杩樺師鍓傞夋嫨鎬у湴涓庣儫姘斾腑鐨勬爱姘у寲鐗╁湪涓瀹氭俯搴︿笅鍙戠敓鍖栧鍙嶅簲鐨勭墿璐ㄣ傜洰鍓峉CR鍟嗙敤鍌寲鍓傚熀鏈兘鏄互TiO2涓哄熀鏉愶紝浠...
  • 鐒﹀寲琛屼笟鐑熸皵浣庢俯SCR鑴辩涓瘯鐮旂┒?
    绛旓細浣庢俯SCR鎶鏈槸閲囩敤杈冧綆娓╁害(灏忎簬300鈩)[2]鐨勬潯浠朵笅娲绘ц緝楂樼殑鍌寲鍓锛鍒╃敤NH3灏嗙儫姘斾腑鐨凬Ox杩樺師涓篘2鍜孒2O鐨勬妧鏈紝涓鑸噰鐢ㄥ熬閮ㄥ竷璁剧殑鏂瑰紡锛屽嵆鑴辩瑁呯疆甯冪疆浜庨櫎灏樿劚纭箣鍚庯紝涓庝竴鑸殑楂樻俯SCR鎶鏈浉姣斿叿鏈夎兘鑰椾綆銆佺郴缁熷竷缃柟渚裤佸偓鍖栧墏浣跨敤瀵垮懡闀裤佽繍琛屾垚鏈綆绛変紭鐐癸紝鍙湁鏁堥伩鍏嶄紶缁烻CR鎶鏈殑璇稿涓嶈冻锛屽叿鏈...
  • 涓鏂囩湅鎳鑴辩鎶鏈笌宸ヨ壓娴佺▼,濡備綍淇濊瘉SCR鐨鑴遍攢鏁堢巼
    绛旓細鑴辩鎶鏈畝浠嬬噧鐑х儫姘斾腑鍘婚櫎姘哀鍖栫墿鐨勮繃绋,闃叉鐜姹℃煋鐨勯噸瑕佹,宸蹭綔涓轰笘鐣岃寖鍥寸殑闂鑰岃灏栭攼鍦版彁浜嗗嚭鏉ャ備笘鐣屼笂姣旇緝涓绘祦鐨勫伐鑹哄垎涓:SCR鍜孲NCR銆傝繖涓ょ宸ヨ壓闄や簡鐢变簬SCR浣跨敤鍌寲鍓瀵艰嚧鍙嶅簲娓╁害姣擲NCR浣庡,鍏朵粬骞舵棤澶ぇ鍖哄埆,浣嗗鏋滀粠寤鸿鎴愭湰鍜岃繍琛屾垚鏈袱涓搴︽潵鐪,SCR鐨鎶曞叆鑷冲皯鏄疭NCR鎶曞叆鐨勬暟鍊,鐢氳嚦10鍊嶄笉姝備负...
  • SCR鑴辩鎶鏈瑙
    绛旓細     鐑熸皵涓殑NOx 娴撳害閫氬父鏄綆鐨,浣嗘槸鐑熸皵鐨勪綋绉浉瀵瑰緢澶,鍥犳鐢ㄥ湪SCR瑁呯疆鐨鍌寲鍓涓瀹 鏄珮鎬ц兘銆傚洜姝ょ敤鍦ㄨ繖绉嶆潯浠朵笅鐨勫偓鍖栧墏涓瀹氭弧瓒崇噧鐓ら攨鐐夐珮鍙潬鎬ц繍琛岀殑瑕佹眰銆     鐑熸皵鑴辩鎶鏈壒鐐:     SCR鑴辩鎶鏈互鍏惰劚闄ゆ晥鐜囬珮,...
  • 璋佽兘瑙i噴涓涓嬩粈涔堟槸scr鑴辩鍌寲鍓,浠ュ強鎴戝浗鐨勭幇鐘
    绛旓細SCR鍌寲鍓鎴愬垎鍙婃瘮渚嬶紝鏍规嵁鐑熸皵涓垚鍒嗗惈閲忎互鍙鑴辩鎬ц兘淇濊瘉鍊肩殑涓嶅悓鑰屼笉鍚屻傛椿鎬х粍鍒嗘槸澶氬厓鍌寲鍓傜殑涓讳綋锛屾槸蹇呭鐨勭粍鍒嗭紝娌℃湁瀹冨氨缂轰箯鎵闇鐨勫偓鍖栦綔鐢ㄣ傚姪鍌寲鍓傛湰韬病鏈夋椿鎬ф垨娲绘у緢灏忥紝浣嗗嵈鑳芥樉钁楀湴鏀瑰杽鍌寲鍓傛ц兘銆傜爺绌跺彂鐜癢O3涓嶮oO3鍧囧彲鎻愰珮鍌寲鍓傜殑鐑ǔ瀹氭э紝骞惰兘鏀瑰杽V2O5涓嶵iO2涔嬮棿鐨勭數瀛愪綔鐢紝鎻愰珮...
  • SCR铚傜獫寮鑴辩鍌寲鍓鎶楃(鎹熸ц兘鐮旂┒?
    绛旓細鍒╃敤鑷埗鎶楃(鎹熸ц兘妯℃嫙璇曢獙瑁呯疆瀵SCR铚傜獫寮忓偓鍖栧墏杩涜浜嗘姉纾ㄦ崯鎬ц兘鐨勮瘯楠岀爺绌躲傜粨鏋滆〃鏄,鍌寲鍓傜殑纾ㄦ崯寮哄害涓昏鍙楃┖閫熷拰纾ㄦ崯鍓傛祿搴︾殑褰卞搷,灏ゅ叾浠ョ┖閫熷奖鍝嶈緝澶с傞殢鐫鍌寲鍓傚瓟鏁扮殑澧炲姞,鍌寲鍓傜(鎹熷己搴﹀拰鎶楃(鎹熸ц兘鎻愰珮銆傜數绔欓攨鐐夌郴缁熸帓鏀剧殑NOx鏄嚧浣块吀闆ㄥ舰鎴愮殑涓昏澶ф皵姹℃煋鐗╀箣涓,鍏稿瀷鐢电珯鎺掓斁鐨凬Ox鐢辩害95%鐨凬O鍜岀害5%鐨凬O...
  • 扩展阅读:scr脱硝技术 ... scr脱硝催化剂厂家排名 ... 中国十大催化剂厂家 ... scr脱硝工艺流程图 ... 脱硝催化剂多少钱一吨 ... scr脱硫脱硝工艺流程 ... 火电厂脱硫脱硝流程图 ... 脱硫脱硝工艺流程图 ... 贵金属催化剂厂家排名 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网