谁能讲讲数学里的十字相乘法 谁能给我讲讲十字相乘法~谢谢老师们~

\u8c01\u80fd\u5e2e\u6211\u8bb2\u4e00\u4e0b\u6570\u5b66\u5341\u5b57\u76f8\u4e58\u6cd5\uff1f\u8c22\u8c22\u5927\u5bb6\u4e86

\u5341\u5b57\u76f8\u4e58\u6cd5\u80fd\u628a\u67d0\u4e9b\u4e8c\u6b21\u4e09\u9879\u5f0f\u5206\u89e3\u56e0\u5f0f\u3002\u8fd9\u79cd\u65b9\u6cd5\u7684\u5173\u952e\u662f\u628a\u4e8c\u6b21\u9879\u7cfb\u6570a\u5206\u89e3\u6210\u4e24\u4e2a\u56e0\u6570a1,a2\u7684\u79efa1•a2\uff0c\u628a\u5e38\u6570\u9879c\u5206\u89e3\u6210\u4e24\u4e2a\u56e0\u6570c1,c2\u7684\u79efc1•c2\uff0c\u5e76\u4f7fa1c2+a2c1\u6b63\u597d\u662f\u4e00\u6b21\u9879b\uff0c\u90a3\u4e48\u53ef\u4ee5\u76f4\u63a5\u5199\u6210\u7ed3\u679c:\u5728\u8fd0\u7528\u8fd9\u79cd\u65b9\u6cd5\u5206\u89e3\u56e0\u5f0f\u65f6\uff0c\u8981\u6ce8\u610f\u89c2\u5bdf\uff0c\u5c1d\u8bd5\uff0c\u5e76\u4f53\u4f1a\u5b83\u5b9e\u8d28\u662f\u4e8c\u9879\u5f0f\u4e58\u6cd5\u7684\u9006\u8fc7\u7a0b\u3002\u5f53\u9996\u9879\u7cfb\u6570\u4e0d\u662f1\u65f6\uff0c\u5f80\u5f80\u9700\u8981\u591a\u6b21\u8bd5\u9a8c\uff0c\u52a1\u5fc5\u6ce8\u610f\u5404\u9879\u7cfb\u6570\u7684\u7b26\u53f7\u3002
\u4f8b\u9898
\u4f8b1
\u628a2x^2;-7x+3\u5206\u89e3\u56e0\u5f0f.
\u5206\u6790\uff1a\u5148\u5206\u89e3\u4e8c\u6b21\u9879\u7cfb\u6570\uff0c\u5206\u522b\u5199\u5728\u5341\u5b57\u4ea4\u53c9\u7ebf\u7684\u5de6\u4e0a\u89d2\u548c\u5de6\u4e0b\u89d2\uff0c\u518d\u5206\u89e3\u5e38\u6570\u9879\uff0c\u5206
\u522b\u5199\u5728\u5341\u5b57\u4ea4\u53c9\u7ebf\u7684\u53f3\u4e0a\u89d2\u548c\u53f3\u4e0b\u89d2\uff0c\u7136\u540e\u4ea4\u53c9\u76f8\u4e58\uff0c\u6c42\u4ee3\u6570\u548c\uff0c\u4f7f\u5176\u7b49\u4e8e\u4e00\u6b21\u9879\u7cfb\u6570.
\u5206\u89e3\u4e8c\u6b21\u9879\u7cfb\u6570(\u53ea\u53d6\u6b63\u56e0\u6570)\uff1a
2\uff1d1\u00d72\uff1d2\u00d71\uff1b
\u5206\u89e3\u5e38\u6570\u9879\uff1a
3=1\u00d73=3\u00d71=(-3)\u00d7(-1)=(-1)\u00d7(-3).
\u7528\u753b\u5341\u5b57\u4ea4\u53c9\u7ebf\u65b9\u6cd5\u8868\u793a\u4e0b\u5217\u56db\u79cd\u60c5\u51b5\uff1a
1
1

\u5341\u5b57\u76f8\u4e58\u6cd5\u80fd\u628a\u67d0\u4e9b\u4e8c\u6b21\u4e09\u9879\u5f0fax2+bx+c(a\u22600)\u5206\u89e3\u56e0\u5f0f\u3002\u8fd9\u79cd\u65b9\u6cd5\u7684\u5173\u5065\u662f\u628a\u4e8c\u6b21\u9879\u7684\u7cfb\u6570a\u5206\u89e3\u6210\u4e24\u4e2a\u56e0\u6570a1,a2\u7684\u79efa1•a2\uff0c\u628a\u5e38\u6570\u9879c\u5206\u89e3\u6210\u4e24\u4e2a\u56e0\u6570c1,c2\u7684\u79efc1•c2\uff0c\u5e76\u4f7fa1c2+a2c1\u6b63\u597d\u662f\u4e00\u6b21\u9879\u7cfb\u6570b\uff0c\u90a3\u4e48\u53ef\u4ee5\u76f4\u63a5\u5199\u6210\u7ed3\u679c\uff1aax2+bx+c=(a1x+c1)(a2x+c2),\u5728\u8fd0\u7528\u8fd9\u79cd\u65b9\u6cd5\u5206\u89e3\u56e0\u5f0f\u65f6\uff0c\u8981\u6ce8\u610f\u89c2\u5bdf\uff0c\u5c1d\u8bd5\uff0c\u5e76\u4f53\u4f1a\u5b83\u5b9e\u8d28\u662f\u4e8c\u9879\u5f0f\u4e58\u6cd5\u7684\u9006\u8fc7\u7a0b\u3002\u5f53\u9996\u9879\u7cfb\u6570\u4e0d\u662f1\u65f6\uff0c\u5f80\u5f80\u9700\u8981\u591a\u6b21\u8bd5\u9a8c\uff0c\u52a1\u5fc5\u6ce8\u610f\u5404\u9879\u7cfb\u6570\u7684\u7b26\u53f7\u3002
\u4f8b:x2+2x-15
\u5206\u6790\uff1a\u5e38\u6570\u9879(-15)<0\uff0c\u53ef\u5206\u89e3\u6210\u5f02\u53f7\u4e24\u6570\u7684\u79ef\uff0c\u53ef\u5206\u89e3\u4e3a(-1)(15)\uff0c\u6216(1)(-15)\u6216(3)
(-5)\u6216(-3)(5)\uff0c\u5176\u4e2d\u53ea\u6709(-3)(5)\u4e2d-3\u548c5\u7684\u548c\u4e3a2\u3002
=\uff08x-3\uff09\uff08x+5)

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式 (²表示平方,下同)
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b

⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立
因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x^3 -2x^2 -x(2003淮安市中考题)
x^3 -2x^2 -x=x(x^2 -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a^2 +4ab+4b^2 (2003南通市中考题)
解:a^2 +4ab+4b^2 =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m^2 +5n-mn-5m
解:m^2+5n-mn-5m= m^2-5m -mn+5n
= (m^2 -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx^2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x^2 -19x-6
分析:
1 -3
7 2
2-21=-19
解:7x^2 -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x^2 +3x-40
解x^2 +3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x^4 -x^3 -6x^2 -x+2

8、 求根法
令多项式f(x)=0,求出其根为x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )
例8、分解因式2x^4 +7x^3 -2x^2 -13x+6
解:令f(x)=2x^4 +7x^3 -2x^2 -13x+6=0
通过综合除法可知,f(x)=0根为1/2 ,-3,-2,1
则2x^4 +7x^3 -2x^2 -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图像法
令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1 )(x-x2 )(x-x3 )……(x-xn )
例9、因式分解x^3 +2x^2 -5x-6
解:令y= x^3 +2x^2 -5x-6
作出其图像,与x轴交点为-3,-1,2
则x^3 +2x^2 -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x^3 +9x^2 +23x+15
解:令x=2,则x^3 +9x^2 +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x^3 +9x^2 +23x+15可能=(x+1)(x+3)(x+5) ,验证后的确如此。
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x^4 -x^3 -5x^2 -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x^4 -x^3 -5x^2 -6x-4=(x^2 +ax+b)(x^2 +cx+d)
= x^4 +(a+c)x^3 +(ac+b+d)x^2 +(ad+bc)x+bd
所以 解得
则x^4 -x^3 -5x^2 -6x-4 =(x +x+1)(x -2x-4)
初学因式分解的“四个注意”
因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。

因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?
如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.

又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,

即a=c,△abc为等腰三角形。

例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。

例4 在实数范围内把x4-5x2-6分解因式。

解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)

这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。



  • 鍗佸瓧鐩镐箻娉鎬庝箞鍋,璋佽兘缁欐垜璁茶銆
    绛旓細1銆佹彁鍙栧叕鍥犲紡娉曘2銆佸叕寮忔硶锛堝钩鏂瑰樊鍏紡鍜屽畬鍏ㄥ钩鏂瑰叕寮忥級銆備緥濡傦細閰嶆柟娉曞拰鍗佸瓧浜ゅ弶娉曠瓑銆(x+2y)(2x-11y)=2x2-7xy-22y2銆(x-3)(2x+1)=2x2-5x-3銆(2y-3)(-11y+1)=-22y2+35y-3銆傝繖灏辨槸鎵璋撶殑鍙屽崄瀛楃浉涔樻硶銆鍗佸瓧鐩镐箻娉曠殑鏂规硶鍙h瘈锛氬崄瀛楀乏杈圭浉涔樼瓑浜庝簩娆¢」绯绘暟锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」...
  • 璋佷細鍗佸瓧鐩镐箻娉,缁欐垜璁茶,寰堟!!!
    绛旓細鍗佸瓧鐩镐箻娉曠殑鏂规硶绠鍗曠偣鏉ヨ灏辨槸锛氬崄瀛楀乏杈圭浉涔樼瓑浜庝簩娆¢」绯绘暟锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟銆傘愪緥銆戞妸2x^2-7x+3鍒嗚В鍥犲紡.鍒嗘瀽锛氬厛鍒嗚В浜屾椤圭郴鏁帮紝鍒嗗埆鍐欏湪鍗佸瓧浜ゅ弶绾跨殑宸︿笂瑙掑拰宸︿笅瑙掞紝鍐嶅垎瑙e父鏁伴」锛屽垎 鍒啓鍦ㄥ崄瀛椾氦鍙夌嚎鐨勫彸涓婅鍜屽彸涓嬭锛岀劧鍚庝氦鍙夌浉涔橈紝姹備唬鏁板拰锛屼娇鍏...
  • 璋佽兘璁茶鏁板閲岀殑鍗佸瓧鐩镐箻娉
    绛旓細璇存槑:鍦ㄦ湰棰樹腑鍏堟妸10x²-27xy-28y²鐢鍗佸瓧鐩镐箻娉鍒嗚В涓(2x -7y)(5x +4y),鍐嶆妸(2x -7y)(5x +4y)-(x -25y)- 3鐢ㄥ崄瀛楃浉涔樻硶鍒嗚В涓篬(2x -7y)+1] [(5x -4y)-3]. 渚7:瑙e叧浜巟鏂圭▼:x²- 3ax + 2a²鈥揳b -b²=0 鍒嗘瀽:2a²鈥揳b-b²鍙互鐢ㄥ崄瀛楃浉涔樻硶杩涜鍥犲紡鍒嗚В 瑙:x²...
  • 璋佽兘璇磋鍗佸瓧鐩镐箻娉鎬庝箞鐢ㄣ傛渶濂藉彲浠ヤ妇渚
    绛旓細鍗佸瓧鍒嗚В娉曡兘鎶婁簩娆′笁椤瑰紡鍥犲紡鍒嗚В銆傝鍔″繀娉ㄦ剰鍚勯」绯绘暟鐨勭鍙凤紝浠ュ強鍐欏湪鍗佸瓧浜ゅ弶绾垮洓涓儴鍒嗙殑椤广鏂规硶鏄細浜ゅ弶鐩镐箻锛屾按骞充功鍐欍傚叕寮忥細x²+(a+b)x+ab=(x+a)(x+b)鎴栧啓涓(x+a)(x+b)=x²+(a+b)x+ab
  • 璇风粰鎴戣涓涓鍗佸瓧鐩镐箻娉銆
    绛旓細璇存槑锛氬湪鏈涓厛鎶28y²-25y+3鐢鍗佸瓧鐩镐箻娉鍒嗚В涓猴紙4y-3锛夛紙7y -1锛夛紝鍐嶇敤鍗佸瓧鐩镐箻娉曟妸10x²-锛27y+1锛墄 -锛4y-3锛夛紙7y -1锛夊垎瑙d负[2x -锛7y -1锛塢[5x +锛4y -3锛塢瑙f硶浜屻10x²-27xy-28y²-x+25y-3 =锛2x -7y锛夛紙5x +4y锛-锛坸 -25y锛- 3 ...
  • 璋佽兘绠鍗曠殑鍛婅瘔鎴鍗佸瓧鐩镐箻娉鏄粈涔?
    绛旓細鍗佸瓧鐩镐箻娉 寮鏀惧垎绫伙細 鏁板銆佸崄瀛楃浉涔樻硶 鍗佸瓧鐩镐箻娉曟蹇 [缂栬緫鏈]鍗佸瓧鐩镐箻娉曡兘鎶婃煇浜涗簩娆′笁椤瑰紡鍒嗚В鍥犲紡銆傝繖绉嶆柟娉曠殑鍏抽敭鏄妸浜屾椤圭郴鏁癮鍒嗚В鎴愪袱涓洜鏁癮1,a2鐨勭Нa1•a2锛屾妸甯告暟椤筩鍒嗚В鎴愪袱涓洜鏁癱1,c2鐨勭Нc1•c2锛屽苟浣縜1c2+a2c1姝eソ鏄竴娆¢」b锛岄偅涔堝彲浠ョ洿鎺ュ啓鎴愮粨鏋:鍦ㄨ繍鐢ㄨ繖绉...
  • 浠涔堟槸鍗佸瓧鐩镐箻娉?鎬庝箞鐢?
    绛旓細绯绘暟涓嶄负涓鐨勫崄瀛楃浉涔樻硶鐨勫簲鐢 1銆佺畝鍖栧洜寮忓垎瑙 瀵逛簬绯绘暟涓嶄负1鐨勪簩娆′笁椤瑰紡锛屽崄瀛楃浉涔樻硶鑳藉灏嗗叾鎷嗗垎鎴愪袱涓竴娆″洜寮忕殑涔樼Н锛屼粠鑰岀畝鍖栦簡鍥犲紡鍒嗚В鐨勮繃绋嬨傝繖浣垮緱鑳藉鏇村揩閫熴佹洿鐩磋鍦版眰瑙d竴浜鏁板闂銆2銆佸簲鐢ㄤ簬鍏朵粬鏁板棰嗗煙 鍗佸瓧鐩镐箻娉曚笉浠呭湪浜屾澶氶」寮忕殑鍥犲紡鍒嗚В涓彂鎸ヤ綔鐢紝杩樺箍娉涘簲鐢ㄤ簬鍏朵粬鏁板棰嗗煙銆傚湪...
  • 姹傝В閲婁竴涓鏁板閲岀殑鈥鍗佸瓧鐩镐箻娉鈥,鏈濂借兘涓句釜渚嬪瓙銆
    绛旓細姹傝В閲婁竴涓鏁板閲岀殑鈥鍗佸瓧鐩镐箻娉鈥濓紝鏈濂借兘涓句釜渚嬪瓙銆備緥濡傦細x²+x-6=0 1 -2 1 3 鍏朵腑1*1=1,-2*3=-6 骞朵笖1*3+1*-2=1 鎵浠ュ彲浠ュ啓鎴愶細锛坸-2锛+锛坸+3锛=0
  • 鏁板鍗佸瓧鐩镐箻娉鐨勫叕寮忔槸浠涔?
    绛旓細x²+(a+b)x+ab=(x+a)(x+b)鍗佸瓧宸﹁竟鐩镐箻绛変簬浜屾椤圭郴鏁帮紝鍙宠竟鐩镐箻绛変簬甯告暟椤癸紝浜ゅ弶鐩镐箻鍐嶇浉鍔犵瓑浜庝竴娆¢」绯绘暟 鍏蜂綋姝ラ锛氬崄瀛楀乏杈圭浉涔樼瓑浜庝簩娆¢」绯绘暟锛屽彸杈圭浉涔樼瓑浜庡父鏁伴」锛屼氦鍙夌浉涔樺啀鐩稿姞绛変簬涓娆¢」绯绘暟
  • 鍗佸瓧鐩镐箻娉鏄粈涔
    绛旓細鍗佸瓧鐩镐箻娉曟槸鍥犲紡鍒嗚В涓崄鍥涚鏂规硶涔嬩竴銆傚崄瀛楃浉涔樻硶 鍗佸瓧鐩镐箻娉曠殑鏂规硶绠鍗曟潵璁插氨鏄細鍗佸瓧宸﹁竟鐩镐箻鐨勭Н涓轰簩娆¢」锛屽彸杈圭浉涔樼殑绉负甯告暟椤癸紝浜ゅ弶鐩镐箻鍐嶇浉鍔犵瓑浜庝竴娆¢」銆傚師鐞嗗氨鏄繍鐢ㄤ簩椤瑰紡涔樻硶鐨勯嗚繍绠楁潵杩涜鍥犲紡鍒嗚В銆傚崄瀛楃浉涔樻硶鑳界敤浜庝簩娆′笁椤瑰紡锛堜竴鍏冧簩娆″紡锛夌殑鍒嗚В鍥犲紡銆傚浜庡儚ax²+bx+c=(a&#...
  • 扩展阅读:初中数学十字交叉法 ... 初中数学十字相乘法 ... 时钟问题十字交叉法 ... 十字相乘例题大全 ... 十字交叉法数学口诀 ... 乘法口诀表练习 ... 十字相乘法100例题 ... 数学十字交叉法教学 ... 初一数学十字交叉法题目 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网