初一数学难题

\u521d\u4e00\u6570\u5b66\u96be\u9898

\u5728\u25b3ADE\u548c\u25b3ACD\u4e2d\uff0c
\u2220DAE+\u2220ADE+\u2220AED\uff1d180\u00b0
\u2220DAC+\u2220C+\u2220ADC\uff1d180\u00b0\uff0c\u2220DAE\u4e0e\u2220DAC\u4e3a\u540c\u4e00\u89d2
\u4e14\u2220ADE\uff1d\u2220C
\u6240\u4ee5\u2220AED\uff1d\u2220ADC

\u601d\u8def\uff1am₁ n₁\u5206\u522b\u662f\u7ebf\u6bb5AC\uff0cCB\u7684\u4e2d\u70b9\uff0c\u5176\u5b9e\u8d28\u5c31\u662f\u628aAC\uff0cCB\u5404\u53d6\u4e00\u534a\uff0c\u4f59\u4e0b\u7684\u7ebf\u6bb5m₁n₁=\u7ebf\u6bb5AB\u7684\u4e00\u534a\u3002\u6362\u53e5\u8bdd\u8bf4m,n\u51fa\u73b0\u591a\u5c11\u5c31\uff0c\u5c31\u628a\u7ebf\u6bb5AB\u53d6\u534a\u591a\u5c11\u6b21\u3002\u6240\u4ee5\u6700\u540e\u7684\u7ed3\u679c\u4e3a\uff1aAB/(2\u76842010\u6b21\u65b9)

有理数练习
练习一(B级)
(一)计算题:
(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5)
(二)用简便方法计算:
(1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25,
求:(-X)+(-Y)+Z的值
(四)用">","0,则a-ba (C)若ba (D)若a<0,ba
(二)填空题:
(1)零减去a的相反数,其结果是_____________; (2)若a-b>a,则b是_____________数; (3)从-3.14中减去-π,其差应为____________; (4)被减数是-12(4/5),差是4.2,则减数应是_____________; (5)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________; (6)(+22/3)-( )=-7
(三)判断题:
(1)一个数减去一个负数,差比被减数小. (2)一个数减去一个正数,差比被减数小. (3)0减去任何数,所得的差总等于这个数的相反数. (4)若X+(-Y)=Z,则X=Y+Z (5)若a<0,b|b|,则a-b>0
练习二(B级)
(一)计算: (1)(+1.3)-(+17/7) (2)(-2)-(+2/3) (3)|(-7.2)-(-6.3)+(1.1)| (4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.
(三)若a,b为有理数,且|a|<|b|试比较|a-b|和|a|-|b|的大小
(四)如果|X-1|=4,求X,并在数轴上观察表示数X的点与表示1的点的距离.
练习三(A级)
(一)选择题:
(1)式子-40-28+19-24+32的正确读法是( ) (A)负40,负28,加19,减24与32的和 (B)负40减负28加19减负24加32 (C)负40减28加19减24加32 (D)负40负28加19减24减负32 (2)若有理数a+b+C<0,则( ) (A)三个数中最少有两个是负数 (B)三个数中有且只有一个负数 (C)三个数中最少有一个是负数 (D)三个数中有两个是正数或者有两个是负数 (3)若m<0,则m和它的相反数的差的绝对值是( ) (A)0 (B)m (C)2m (D)-2m (4)下列各式中与X-y-Z诉值不相等的是( ) (A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z)
(二)填空题:
(1)有理数的加减混合运算的一般步骤是:(1)________;(2)_________;(3)________ _______;(4)__________________. (2)当b0,(a+b)(a-1)>0,则必有( ) (A)b与a同号 (B)a+b与a-1同号 (C)a>1 (D)b1 (6)一个有理数和它的相反数的积( ) (A)符号必为正 (B)符号必为负 (C)一不小于零 (D)一定不大于零 (7)若|a-1|*|b+1|=0,则a,b的值( ) (A)a=1,b不可能为-1 (B)b=-1,a不可能为1 (C)a=1或b=1 (D)a与b的值相等 (8)若a*B*C=0,则这三个有理数中( ) (A)至少有一个为零 (B)三个都是零 (C)只有一个为零 (D)不可能有两个以上为零
(二)填空题:
(1)有理数乘法法则是:两数相乘,同号__________,异号_______________,并把绝对值_____, 任何数同零相乘都得__________________. (2)若四个有理数a,b,c,d之积是正数,则a,b,c,d中负数的个数可能是______________; (3)计算(-2/199)*(-7/6-3/2+8/3)=________________; (4)计算:(4a)*(-3b)*(5c)*1/6=__________________; (5)计算:(-8)*(1/2-1/4+2)=-4-2+16=10的错误是___________________; (6)计算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根据是_______
(三)判断题:
(1)两数之积为正,那么这两数一定都是正数; (2)两数之积为负,那么这两个数异号; (3)几个有理数相乘,当因数有偶数个时,积为正; (4)几个有理数相乘,当积为负数时,负因数有奇数个; (5)积比每个因数都大.
练习(四)(B级)
(一)计算题:
(1)(-4)(+6)(-7) (2)(-27)(-25)(-3)(-4) (3)0.001*(-0.1)*(1.1) (4)24*(-5/4)*(-12/15)*(-0.12) (5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7) (6)(-24/7)(11/8+7/3-3.75)*24
(二)用简便方法计算:
(1)(-71/8)*(-23)-23*(-73/8) (2)(-7/15)*(-18)*(-45/14) (3)(-2.2)*(+1.5)*(-7/11)*(-2/7) (三)当a=-4,b=-3,c=-2,d=-1时,求代数式(ab+cd)(ab-cd)的值.
(四)已知1+2+3+......+31+32+33=17*33,计算下式
1-3+2-6+3-9-12+...+31-93+32-96+33-99的值
练习五(A级)
(一)选择题:
(1)已知a,b是两个有理数,如果它们的商a/b=0,那么( ) (A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整数,则( ) (A)|b|是a的约数 (B)|b|是a的倍数 (C)a与b同号 (D)a与b异号 (4)如果a>b,那么一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1
(二)填空题:
(1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0; (11)若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科学记数法表示106000,其中正确的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,则123.63等于( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理数,下列各式总能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)计算:(-1)1-(-2)2-(-3)3-(-4)4所得结果是( ) (A)288 (B)-288 (C)-234 (D)280
一 填空题
1.-(- )的倒数是_________,相反数是__________,绝对值是__________。
2.若|x|+|y|=0,则x=__________,y=__________。
3.若|a|=|b|,则a与b__________。
4.因为到点2和点6距离相等的点表示的数是4,有这样的关系 ,那么到点100和到点999距离相等的数是_____________;到点 距离相等的点表示的数是____________;到点m和点–n距离相等的点表示的数是________。
5.计算: =_________。
6.已知 ,则 =_________。
7.如果 =2,那么x= .
8.到点3距离4个单位的点表示的有理数是_____________。
9.________________________范围内的有理数经过四舍五入得到的近似数3.142。
10.小于3的正整数有_____.
11. 如果m<0,n>0,|m|>|n|,那么m+n__________0。
12.你能很快算出 吗?
为了解决这个问题,我们考察个位上的数为5的正整数的平方,任意一个个位数为5的正整数可写成10n+5(n为正整数),即求 的值,试分析 ,2,3……这些简单情形,从中探索其规律。
⑴通过计算,探索规律:
可写成 ;
可写成 ;
可写成 ;
可写成 ;
………………
可写成________________________________
可写成________________________________
⑵根据以上规律,试计算 =
13.观察下面一列数,根据规律写出横线上的数,
- ; ;- ; ; ; ;……;第2003个数是 。
14. 把下列各数填在相应的集合内。

整数集合:{ ……}
负数集合:{ ……}
分数集合:{ ……}
非负数集合:{ ……}
正有理数集合:{ ……}
负分数集合:{ ……}
二 选择题
15.(1)下列说法正确的是( )
(A)绝对值较大的数较大;
(B)绝对值较大的数较小;
(C)绝对值相等的两数相等;
(D)相等两数的绝对值相等。
16. 已知a<c<0,b>0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( )
A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c
17.下列结论正确的是( )
A. 近似数1.230和1.23的有效数字一样
B. 近似数79.0是精确到个位的数,它的有效数字是7、9
C. 近似数3.0324有5个有效数字
D. 近似数5千与近似数5000的精确度相同
18.两个有理数相加,如果和比其中任何加数都小,那么这两个加数( )
(A)都是正数 (B)都是负数 (C)互为相反数 (D)异号
19. 如果有理数 ( )
A. 当
B.
C.
D. 以上说法都不对
20.两个非零有理数的和为正数,那么这两个有理数为( )
(A)都是正数 (B)至少有一个为正数
(C)正数大于负数 (D)正数大于负数的绝对值,或都为正数。
三计算题
21. 求下面各式的值(-48)÷6-(-25)×(-4)
(2)5.6+[0.9+4.4-(-8.1)];
(3)120×( );
(4)
22. 某单位一星期内收入和支出情况如下:+853.5元,+237.2元,-325元,+138.5元,-280元,-520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元?
提示:本题中正数表示收入,负数表示支出,将七天的收入或支出数相加后,和为正数表示盈余,和为负数表示亏损。

23. 某地一周内每天的最高气温与最低气温记录如下表,哪天的温差最大哪天的温差最小?
星期 一 二 三 四 五 六 七
最高气温 10ºC 11ºC 12ºC 9ºC 8ºC 9ºC 8ºC
最低气温 2ºC 0ºC 1ºC -1ºC -2ºC -3ºC -1ºC

24、正式排球比赛,对所使用的排球的重量是有严格规定的。检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下表:
+15 -10 +30 -20 -40
指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?
25. 已知 ; ;

(1)猜想填空:
(2)计算①
②23+43+63+983+……+1003

26.探索规律将连续的偶2,4,6,8,…,排成如下表:
2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
… …
(1) 十字框中的五个数的和与中间的数和16有什么关系?
(2) 设中间的数为x ,用代数式表示十字框中的五个数的和.
(3) 若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数,如不能,说明理由。
27.设y=ax5+bx3+cx-5,其中a,b,c,为常数,已知当x= -5时,y=7,求当x=5时,求y的值。
有理数练习题参考答案
一 填空题
1. 4, - , .提示:题虽简单,但这类概念题在七年级的考试中几乎必考。
2. 0,0.提示:|x|≥0,|y|≥0.∴x=0,y=0.
3.相等或者互为相反数。提示:互为相反数的绝对值相等 。
4. 549.5, , .提示:到数轴上两点相等的数的中点等于这两数和的一半.
5. 0.提示:每相邻的两项的和为0。
6. -8.提示: ,4+a=0,a-2b=0,解得:a= -4,b= -2. = -8.
7. x-3=±2。x=3±2,x=5或x=1.
8. -1或7。提示:点3距离4个单位的点表示的有理数是3±4。
9. 3.1415-3.1424.提示:按照四舍五入的规则。
10.1,2.提示:大于零的整数称为正整数。
11. <0.提示:有理数的加法的符号取决于绝对值大的数。
12. =5625=100×5×(5+1)+25; =7225=100×8×(8+1)+25;
=100×10×(10+1)+25=11025.
13. , , .提示:这一列数的第n项可表示为(-1)n .
14. 提示:(1)集合是指具有某一特征的一类事物的全体,注意不要漏掉数0,题目中只是具体的几个符合条件的数,只是一部分,所以通常要加省略号。
(2)非负数表示不是负数的所有有理数,应为正数和零,那么非正数表示什么呢?(答:负数和零)
答案:整数集合:{ ……}
负数集合:{ ……}
分数集合:{ ……}
非负数集合:{ ……}
正有理数集合:{ ……}
负分数集合:{ ……}
二 选择题
15. D.提示:对于两个负数来说,绝对值小的数反而大,所以A错误。对于两个正数来说,绝对值大的数大,所以B错误。互为相反数的两个数的绝对值相等。
16.A.提示:-a+b-(-c)-(a+b)+(b+c)-(a+c)= -3a+b+c
17. C.提示:有效数字的定义是从左边第一位不为零的数字起,到右边最后一个数字结束。18.B
19.C 提示:当n为奇数时, , <0. 当n为偶数时, , <0.所以n为任意自然数时,总有 <0成立.
20. D.提示:两个有理数想加,所得数的符号由绝对值大的数觉得决定。
三计算题
21. 求下面各式的值
(1)-108
(2)19 .提示:先去括号,后计算。
(3)-111 .提示: 120×( )
120×( )
=120×(- )+120× -120×
= -111
(4) .提示;
=1- +
=
22. 提示:本题中正数表示收入,负数表示支出,将七天的收入或支出数相加后,和为正数表示盈余,和为负数表示亏损。
解:(+853.5)+(+237.2)+(-325)+(+138.5)+(-520)+(-280)+(+103)
=[(+853.5)+(+237.2)+(+138.5)+(+103)]+[(-325)+(-520)+(-280)]
=(+1332.2)+(-1125)
=+207.2
故本星期内该单位盈余,盈余207.2元。
23. 提示:求温差利用减法,即最高温度的差,再比较它们的大小。
解:周一温差:10-2=8(ºC)
周二温差:11-0=11(ºC)
周三温差:12-1=11(ºC)
周四温差:9-(-1)=10(ºC)
周五温差:8-(-2)=10(ºC)
周六温差:9-(-3)=12(ºC)
周日温差:8-(-1)=9(ºC)
所以周六温差最大,周一温差最小。
24、
解:第二只排球质量好一些,利用这些数据的绝对值的大小来判断排球的质量,绝对值越小说明越接近规定重量,因此质量也就好一些。
25.
(1) (2)①25502500;提示:原式=
②原式=
=23×13+23×23+23×33+23×43+23×53+……+23×503
=23(13+23+33+43+53+……+503)
=8×
=13005000
26.
(1) 十字框中的五个数的和等于中间的5倍。
(2) 5x
(3) 不能,假设5x=201.x=40.2.不是整数.所以不存在这么一个x.
27.y=ax5+bx3+cx-5,y+5= ax5+bx3+cx,当x=-5时,y+5=12.
-(y+5)=-ax5-bx3-cx=a(-x)5+b(-x)3+c(-x)
∴当x=5时,a(-5)5+b(-5)3+c(-5)=-12;
a(-5)5+b(-5)3+c(-5)-5= -17

这是我从网上找的,你自己选做吧。

填空题:从-3.14中减去-π,其差应为____________;
选择题:若m<0,则m和它的相反数的差的绝对值是( ) (A)0 (B)m (C)2m (D)-2m
计算题:(1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
答案:填空题:-3.14-∏
选择题:A
计算题:(1)5/12 (2)0

小明用边长20厘米的正方形纸片制作一个无盖的长方体形纸盒。他在正方形纸片的四个角上减去边长为4厘米的小正方形,这样折成的无盖长方体形纸盒的容积是多少?

mm

  • 鍒濅竴鏁板闅鹃(闄勭瓟妗)瓒婂瓒婂ソ
    绛旓細1銆佽嫢a 0,鍒檃+ = 2銆佺粷瀵瑰兼渶灏忕殑鏁版槸 3銆佷竴涓湁鐞嗘暟鐨勭粷瀵瑰肩瓑浜庡叾鏈韩,杩欎釜鏁版槸锛 锛堿銆佹鏁 B銆侀潪璐熸暟 C銆侀浂 D銆佽礋鏁 4銆佸凡鐭涓1浜掍负鐩稿弽鏁,涓攟 a+x |涓 x 浜掑掓暟,姹 x 2000鈥攁 x2001鐨勫.5銆佷竴涓笁浣嶆暟,鐧句綅涓婄殑鏁板瓧姣斿崄浣嶄笂鐨勬暟瀛楀ぇ1,涓綅涓婄殑鏁板瓧姣斿崄浣嶄笂鐨勬暟瀛...
  • 鍒濅竴涓嬪唽鏁板蹇呰闅鹃闅剧偣鏈夊摢浜
    绛旓細鍒濅竴涓嬪唽鏁板蹇呰冮毦鐐癸細鐩镐氦绾夸笌骞宠绾挎ā鍧楋細骞宠绾夸腑鎬ц川鍙互鍒ゅ畾骞宠锛屽钩琛屽彲浠ユ帹鍑烘ц川銆傚湪鍑犱綍璇佹槑棰樹腑锛屽悓浣嶈鐩哥瓑銆佸唴閿欒鐩哥瓑銆佸悓鏃佸唴瑙掍簰琛ヤ娇鐢ㄧ巼鏈楂樸傚疄鏁版ā鍧楋細娉ㄦ剰鍖哄垎骞虫柟鏍逛笌绔嬫柟鏍圭殑涓嶅悓锛岃蹇嗗父鐢ㄦ暟瀛楃殑骞虫柟鏍瑰拰绔嬫柟鏍广傚垵涓涓嬪唽鏁板蹇呰闅鹃 鍒濅竴涓嬪唽鏁板蹇呰冮毦鐐 涓銆佺浉浜ょ嚎涓庡钩琛岀嚎妯″潡锛...
  • 鍒濅竴鏁板,闅鹃鍙婄瓟妗
    绛旓細1銆丄B鏄姍O鐨勭洿寰勶紝CD鏄姍O鐨勫垏绾匡紝鍒囩偣涓篋锛孋D涓嶢B鐨勫欢闀跨嚎浜や簬鐐笴锛屸垹A=30掳锛岀粰鍑轰笅闈3涓粨璁猴細鈶燗D=CD锛涒憽BD=BC锛涒憿AB=2BC锛屽叾涓纭粨璁虹殑涓暟鏄紙锛夎В绛旓細瑙o細濡傚浘锛岃繛鎺D锛屸埖CD鏄姍O鐨勫垏绾匡紝鈭碈D鈯D锛屸埓鈭燨DC=90掳锛屽張鈭碘垹A=30掳锛屸埓鈭燗BD=60掳锛屸埓鈻砄BD鏄瓑杈逛笁瑙掑舰锛屸埓...
  • 涓冨勾绾т笅鍐鏁板闅鹃|涓冨勾绾т笅鏁板闅鹃绮鹃
    绛旓細鍒濅竴涓嬪唽鏁板闅鹃 1銆佽В鏂圭▼锛180-伪-290-伪= ( )1⨯180 锛屽垯伪3 2銆佺敤10%鍜5%鐨勭洂姘村悎鎴8%鐨勭洂姘10kg 锛岄棶10%鍜5%鐨勭洂姘村悇闇澶氬皯kg 锛3銆佸凡鐭5x +2k =3鐨勮В涓烘鏁帮紝鍒檏 鐨勫彇鍊艰寖鍥存槸 4銆侊紙2锛夎嫢⎨⎧x -2a 〈1鐨勮В涓簒 锛3锛屽垯a 鐨勫彇鍊艰寖鍥 ⎩...
  • 涓冨勾绾鏁板闅鹃(瑙g瓟棰)鍙婄瓟妗
    绛旓細涓冨勾绾鏁板闅鹃(瑙g瓟棰)鍙婄瓟妗1. 鐢层佷箼銆佷笝涓変汉鍦ˋ銆丅涓ゅ潡鍦版鏍,A鍦拌妞900妫,B鍦拌妞1250妫.宸茬煡鐢层佷箼銆佷笝姣忓ぉ鍒嗗埆鑳芥鏍24,30,32妫,鐢插湪A鍦版鏍,涓欏湪B鍦版鏍,涔欏厛鍦ˋ鍦版鏍,鐒跺悗杞埌B鍦版鏍.涓ゅ潡鍦板悓鏃
  • 璋佹湁鏁板鍒濅竴濂ユ暟闅鹃
    绛旓細10锛巟锛寉锛寊鍧囨槸闈炶礋瀹炴暟锛屼笖婊¤冻锛 x锛3y锛2z=3锛3x锛3y+z=4锛 姹倁=3x-2y锛4z鐨勬渶澶у间笌鏈灏忓硷紟11锛庢眰x4-2x3锛媥2+2x-1闄や互x2+x锛1鐨勫晢寮忓拰浣欏紡锛19锛庝换鎰忔敼鍙樻煇涓変綅鏁版暟鐮侀『搴忔墍寰椾箣鏁颁笌鍘熸暟涔嬪拰鑳藉惁涓999锛熻鏄庣悊鐢憋紟20锛庤鏈変竴寮8琛屻8鍒楃殑鏂规牸绾革紝闅忎究鎶婂叾涓32涓柟鏍兼秱...
  • 鍗侀亾鍒濅竴涓嬫湡鎴栧垵浜屼笂鏈熺殑鏁板闅鹃
    绛旓細鍒濅竴涓:1.鏌愮彮鏈夎嫢骞插鐢熶綇瀹匡紝鑻ユ瘡闂翠綇4浜猴紝鍒欐湁20浜烘病瀹胯垗浣忥紱鑻ユ瘡闂翠綇8浜哄垯鏈変竴闂存病鏈変綇婊′汉锛岃瘯姹傝鐝鑸嶉棿鏁板強浣忓浜烘暟锛2.灏忓疂鍜岀埜鐖搞佸濡堜笁浜哄湪鎿嶅満涓婄帺璺疯贩鏉匡紝鐖哥埜浣撻噸涓72鍗冨厠锛屽潗鍦ㄨ贩璺锋澘鐨勪竴绔紝浣撻噸鍙湁濡堝涓鍗婄殑灏忓疂鍜屽濡堜竴鍚屽潗鍦ㄨ贩璺锋澘鐨勫彟涓绔紝杩欐椂锛岀埜鐖哥殑鑴氫粛鐒剁潃鍦般傚悗鏉...
  • 鍒濅竴涓婂唽鏁板闅鹃甯︾瓟妗30閬,鎬ラ渶++
    绛旓細鎴戣窡浣犱竴鏍锋槸鍒濅竴鐨,鎴戝緢鎯冲枩娆鏁板,涓婇潰杩欎簺棰樻槸鎴戝伓鐒跺彂鐜扮殑,鎰熻鍋氳捣鏉ュ緢鏈夋寫鎴樻,鎵浠ュ彂涓婃潵涓庡悰鍏卞媺,閲囩撼鎴戝惂!(娉:杩欎簺棰樼洰铔嚭鍚嶇殑,绛旀涓婄綉鏌ュ氨鏈夊ソ澶)甯屾湜鑳藉府鍔╁埌浣,鍔犳补! 鏈洖绛旂敱缃戝弸鎺ㄨ崘 涓炬姤| 璇勮(10) 175 70 涓斿惉鑺卞奖 閲囩撼鐜:40% 鎿呴暱: 鏆傛湭瀹氬埗 鍏朵粬鍥炵瓟 鐢层佷箼涓よ溅鍒嗗埆浠嶢銆丅涓ゅ湴...
  • 姹鍒濅竴涓婂鏈50閬鏁板闅鹃
    绛旓細鍒濅竴鐨勯鐩棤鎵璋撻毦涓嶉毦鐨,浣犺涓洪毦鐨,鍙槸鍚庢潵瑕佸鍒扮殑鑰屽凡,鎵浠ヤ笉鏄垵涓夌殑鎴栭珮涓夌殑灏变笉鍙闅鹃浜嗐傛湁闂浣犵洿鎺ラ棶鎴戝ソ浜 宸茶禐杩 宸茶俯杩< 浣犲杩欎釜鍥炵瓟鐨勮瘎浠锋槸? 璇勮 鏀惰捣 鏉ヨ嚜浜斿簻灞辫緣鐓岀殑姣旂洰楸 2010-02-21 路 TA鑾峰緱瓒呰繃695涓禐 鐭ラ亾灏忔湁寤烘爲绛斾富 鍥炵瓟閲:388 閲囩撼鐜:0% 甯姪鐨勪汉:200涓...
  • 鍒濅竴鏁板涓婂唽闅鹃,瓒婇毦瓒婂ソ,涓嶈绛旀
    绛旓細1.鏌愪腑瀛︾殑瀛︾敓鑷嚑鍔ㄦ墜鏁翠慨鎿嶅満,濡傛灉璁鍒濅竴鐨勫鐢熷崟鐙伐浣,闇瑕7.5灏忔椂瀹屾垚;濡傛灉璁╁垵2鐨勫鐢熷崟鐙伐浣,闇瑕5灏忔椂瀹屾垚.濡傛灉璁╁垵涓,鍒2鐨勫鐢熶竴璧峰伐浣滀竴灏忔椂,鍐嶇敱鍒2鐨勫鐢熷崟鐙畬鎴愬墿浣欓儴鍒,鍏遍渶瑕佸灏戞椂闂?2.涓鏉″北璺紝浠庡北涓嬪埌灞遍《锛岃蛋浜1灏忔椂杩樺樊1km锛屼粠灞遍《鍒板北涓嬶紝鐢50鍒嗛挓鍙互璧板畬锛庡凡鐭ヤ笅灞...
  • 扩展阅读:初一数学难题压轴题 ... 初一上册数学必考难题 ... 初一数学免费试题库 ... 初一数学必练100题 ... 初中数学最难的题 ... 初一数学第一单元试题 ... 初一上册数学压轴题 ... 初中数学难题100例 ... 初一数学最难的题目 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网