跪求5000字的外文翻译(英语单词满5000),在线等

功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。下面对谱估计的发展过程做简要回顾: 英国科学家牛顿最早给出了“谱”的概念。后来,1822年,法国工程师傅立叶提出了著名的傅立叶谐波分析理论。该理论至今依然是进行信号分析和信号处理的理论基础。

傅立叶级数提出后,首先在人们观测自然界中的周期现象时得到应用。19世纪末,Schuster提出用傅立叶级数的幅度平方作为函数中功率的度量,并将其命名为“周期图”(periodogram)。这是经典谱估计的最早提法,这种提法至今仍然被沿用,只不过现在是用快速傅立叶变换(FFT)来计算离散傅立叶变换(DFT),用DFT的幅度平方作为信号中功率的度量。 周期图较差的方差性能促使人们研究另外的分析方法。1927年,Yule提出用线性回归方程来模拟一个时间序列。Yule的工作实际上成了现代谱估计中最重要的方法——参数模型法谱估计的基础。 Walker利用Yule的分析方法研究了衰减正弦时间序列,得出Yule-Walker方程,可以说,Yule和Walker都是开拓自回归模型的先锋。 1930年,著名控制理论专家Wiener在他的著作中首次精确定义了一个随机过程的自相关函数及功率谱密度,并把谱分析建立在随机过程统计特征的基础上,即,“功率谱密度是随机过程二阶统计量自相关函数的傅立叶变换”,这就是Wiener—Khintchine定理。该定理把功率谱密度定义为频率的连续函数,而不再像以前定义为离散的谐波频率的函数。 1949年,Tukey根据Wiener—Khintchine定理提出了对有限长数据进行谱估计的自相关法,即利用有限长数据估计自相关函数,再对该自相关函数球傅立叶变换,从而得到谱的估计。1958年, Blackman和Tukey在出版的有关经典谱估计的专著中讨论了自相关谱估计法,所以自相关法又叫BT法。 周期图法和自相关法都可用快速傅立叶变换算法来实现,且物理概念明确,因而仍是目前较常用的谱估计方法。 1948年,Bartlett首次提出了用自回归模型系数计算功率谱。自回归模型和线性预测都用到了1911年提出的Toeplitz矩阵结构,Levinson曾根据该矩阵的特点于1947年提出了解Yule-Walker的快速计算方法。这些工作为现代谱估计的发展打下了良好的理论基础。 1965年,Cooley和Tukey提出的FFT算法,也促进了谱估计的迅速发展。 现代谱估计主要是针对经典谱估计的分辨率差和方差性能不好的问题而提出的。现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。 周期运动在功率谱中对应尖锋,混沌的特征是谱中出现"噪声背景"和宽锋。它是研究系统从分岔走向混沌的重要方法。 在很多实际问题中(尤其是对非线性电路的研究)常常只给出观测到的离散的时间序列X1, X2, X3,...Xn,那么如何从这些时间序列中提取前述的四种吸引子(零维不动点、一维极限环、二维环面、奇怪吸引子)的不同状态的信息呢? 我们可以运用数学上已经严格证明的结论,即拟合。我们将N个采样值加上周期条件Xn+i=Xi,则自关联函数(即离散卷积)为 然后对Cj完成离散傅氏变换,计算傅氏系数。 Pk说明第k个频率分量对Xi的贡献,这就是功率谱的定义。当采用快速傅氏变换算法后,可直接由Xi作快速傅氏变换,得到系数 然后计算 ,由许多组{Xi}得一批{Pk'},求平均后即趋近前面定义的功率谱Pk。 从功率谱上,四种吸引子是容易区分的,如图12 (a),(b)对应的是周期函数,功率谱是分离的离散谱 (c)对应的是准周期函数,各频率中间的间隔分布不像(b)那样有规律。 (d)图是混沌的功率谱,表现为"噪声背景"及宽锋。 考虑到实际计算中,数据只能取有限个,谱也总以有限分辨度表示出来,从物理实验和数值计算的角度看,一个周期十分长的解和一个混沌解是难于区分的,这也正是功率谱研究的主要弊端。

Power spectrum estimation is the main content of digital signal processing, one of the main signal in the frequency domain of various features of the purpose in the frequency domain based on limited data lost in the noise in the extraction of the useful signal. The following estimates of the spectrum to do a brief review of the development process: British scientist Newton was first given a "spectrum" concept. Later, in 1822, proposed the famous French engineer Fourier Fourier harmonic analysis theory. The theory is still being used for signal analysis and signal processing theory.

Fourier series is proposed, first in one cycle of observing phenomena in nature are applied. The late 19th century, Schuster presented the magnitude of a Fourier series as a function of the square measure of power, and name it as the "periodogram" (periodogram). This is the earliest reference to the classical spectrum estimation, this formulation is still in use, but now is fast Fourier transform (FFT) to calculate the discrete Fourier transform (DFT), with the square of the magnitude of DFT as a measure of signal power . Periodogram poor performance prompted the variance of the other methods. In 1927, Yule made a linear regression equation to simulate a time series. Yule's work actually became the most important modern spectral estimation methods - parameter model based spectrum estimation method. Analysis using Yule Walker method of attenuation sinusoidal time series, obtained Yule-Walker equation, it can be said, Yule and Walker is a pioneer in developing self-regression model. In 1930, the famous Wiener control theory experts, the first time in his book accurately defines a random process the autocorrelation function and power spectral density, and the spectral analysis based on random process based on the statistical characteristics, namely, "the power spectral density is a random process of order statistics of the Fourier transform of the autocorrelation function, "which is the Wiener-Khintchine theorem. The theorem of the power spectral density is defined as the frequency of the continuous function, and not as previously defined for the discrete harmonic function of frequency. In 1949, Tukey proposed under the Wiener-Khintchine theorem of finite length data for the autocorrelation spectral estimation method, namely the use of finite length data to estimate the autocorrelation function, then the Fourier transform of the autocorrelation function of the ball, resulting in spectrum estimation. In 1958, Blackman and Tukey in the publication of the relevant classical spectrum estimation are discussed in the monograph autocorrelation spectrum estimation, the autocorrelation method also known as BT. Periodogram and autocorrelation are available to achieve the fast Fourier transform algorithm, and a clear physical concept, which is still the more commonly used method for spectral estimation. In 1948, Bartlett was the first time since the regression coefficients using the power spectrum. Since the regression model and linear prediction are used in the 1911's Toeplitz matrix structure, Levinson has been based on the characteristics of the matrix presented in 1947 to understand the rapid calculation of Yule-Walker method. The work was the development of modern spectral estimation theory has laid a good foundation. In 1965, Cooley and Tukey's FFT algorithm, but also promoted the rapid development of spectral estimation. Modern spectral estimation is mainly the resolution of the classical spectrum estimation deviation and variance problem of poor performance raised. Modern spectral estimation methods can be broadly divided from the parameter model spectrum estimation and two non-parametric model spectrum estimation, the former AR model, MA model, ARMA model, PRONY index models; which has a minimum variance method, multi-component MUSIC methods. Periodic motion of the corresponding point in the power spectrum front, chaos is characterized by a spectrum of a "background noise" and the wide front. It is to study the system from the bifurcation to chaos in important ways. In many practical problems (especially the research on nonlinear circuits) are often given only the observed discrete time series X1, X2, X3, ... Xn, then how to extract from these time series, the four aforementioned attractor (zero-dimensional fixed point, one-dimensional limit cycle, two-dimensional torus, strange attractors) of the different states of information? We can already strict mathematical proof of the conclusion that the fitting. Value of N samples we will add the periodic condition Xn + i = Xi, then the autocorrelation function (ie, discrete convolution) is then complete the Discrete Fourier Transform Cj calculated Fourier coefficients. K-Pk Notes the contribution of frequency components of Xi, which is the definition of the power spectrum. When using the fast Fourier transform algorithm, you can
the Xi as fast Fourier transformation, calculation of coefficients and then by many groups {Xi} be a group of {Pk '}, averaging closer to the front after the definition of the power spectrum Pk . From the power discrete spectrum (c) corresponds to quasi-periodic function, the frequency of the middle Unlike the interval distribution (b) as a regular. (D) map is chaotic power spectrum, expressed as "background noise" and the wide front. Taking into account the actual calculation, the data can only take a finite number, the total spectrum are represented by a limited degree of resolution, from the physical experiments and numerical point of view, the solution of a very long cycle and a chaotic solution is difficult to distinguish, and this is is the power spectrum of the major drawbacks

  • 鑻辫搴熶汉姹澶栨枃缈昏瘧!涓囧垎鎰熻阿!
    绛旓細缈昏瘧濡備笅锛氫緵搴旈摼鍜屼緵搴旈摼绠$悊涓彂鎸ヤ簡閲嶈浣滅敤锛屼紒涓氭晥鐜 鍦ㄨ繃鍘荤殑鍑犲勾锛屽惛寮曚簡璁稿瀛﹁呯殑鍏虫敞銆傚叕寮浜嗕竴绉嶅鏈枃鐚患杩 鍦ㄧ爺绌跺湪鐞嗚鍜屽疄璺电殑閲嶈渚涘簲閾剧獊鍙戯紙SC锛夊拰渚涘簲閾剧鐞嗭紙SCM锛夈傝繛鎺ュ苟閫氱煡渚涘簲閾撅紝渚涘簲閾剧鐞嗗拰閰嶉佺鐞 鐗圭偣鏈夊姪浜庝緵搴旈摼鐨勬暣鍚堛傝繖绉嶆暣鍚堟墍浜х敓鐨勬柟娉 鎵╁睍鐨勪紒涓氬拰渚涘簲閾炬槸鐩墠...
  • ...澶栨枃鏂囩尞(瑕佹湁鑻辨枃鍘熸枃銆佷綔鑰呫佸嚭澶勫拰璇戞枃,5000瀛)鎬!!!
    绛旓細甯綘鎵炬枃鐚紝甯綘缈昏瘧锛岀湡鐨勬槸鍙戠儳鍙嬩簡 5000瀛楃炕璇鍏徃瑕佹敹涓嶅皯閽变簡銆傛垜鍙壘鍒板嚑鐧瀛楃殑绠浠嬶紝瑕佺殑璇濇垜鍙互甯綘缈讳竴涓 浣犲厛鐪嬩竴涓嬶紝濡傛灉瑙夊緱鏈夌敤鎴戝啀缁х画缈昏瘧 Developing an Internal Accounting Control System 鍐呴儴浼氳鎺у埗绯荤粺鐨勫缓绔 The first step in developing an effective internal accounting...
  • 鍏充簬鐢靛瓙鍟嗗姟鐨勫鏂囩炕璇鎴愪腑鏂,涓嫳鏂囬兘瑕,2000瀛椾互涓,瑕佹敞鏄庡嚭澶...
    绛旓細nternet浣滀负鐢靛瓙鍟嗗姟鐨勮浇浣擄紝宸叉垚涓轰紒涓氬繀涓嶅彲灏戠殑淇℃伅閲囬泦銆佷紶杈撳拰浜ゆ崲鐨勫伐鍏凤紝缃戠粶锛堜俊鎭級鏃朵唬鐨勫埌鏉ヤ负鍩轰簬Internet鐨処T鏈嶅姟涓氭敞鍏ヤ簡鏂扮殑娲诲姏锛孖nternet is electronic vehicle for business on line, it turns to be unsplit tool for company for the purpose of collection, transferring and exchange...
  • 楂樺垎姹 鍐滄潙鍓╀綑鍔冲姩鍔 澶栨枃缈昏瘧
    绛旓細楂樺垎姹 鍐滄潙鍓╀綑鍔冲姩鍔 澶栨枃缈昏瘧鏄澶栧浗浜哄啓鐨勬墠绠,涓浗浜虹敤鑻辫鍐欑殑,涓嶉渶瑕併傝鐨勬槸鍘熸枃鏂囩尞 鍘熸枃浣滆 褰撶劧鍦ㄨ繖涓熀纭涓婂苟缈昏瘧浜 閭e氨鏇村ソ浜嗗鏈夋弧鎰忕瓟澶,鍙﹀姞鍒嗐傝澶栧浗浜哄啓鐨 璋㈣阿瑕佷笉鍚岀殑2绡,瀛楁暟涓嶉渶瑕佸お澶,姣忎竴绡囦竴娈靛氨澶熶簡 銆鑻辨枃涓涓囧瓧瀛楃,缈昏瘧鎴愪腑鏂囩殑璇,涓鍗冧釜瀛椾互涓婂氨鍙互浜,涓嶉渶瑕佹垚绡囨垚绡...
  • 姹鑻辫楂樻墜,澶栨枃缈昏瘧,鎬!!!
    绛旓細宸т簡锛屾垜灏辨槸瀛︽暟鎹簱鐨勩缈昏瘧濡備笅锛屾湜妤间富婊℃剰锛欴atabase Basics The purpose of a database is to store the day-to-day operational information required by an organization. Any means of collecting and organizing data is a database.鏁版嵁搴撳熀纭 鏁版嵁搴撶敤鏉ュ偍瀛樺姙鍏満鏋勭殑鏃ュ父鎿嶄綔淇℃伅銆備换浣...
  • 鎬ユ眰涓绡囧叧浜庨槻鐏鏂归潰鐨勫鏂囩炕璇(涓枃鍜鑻辨枃閮借)
    绛旓細渚嬪鍥介槻閮ㄤ互鍙婂ぇ鍨嬫満鎴跨瓑鍦版墠鐢,鍥犱负瀹冧环鏍兼槀璐)銆傝璁$畻鏈烘祦鍏ユ祦鍑虹殑鎵鏈夌綉缁滈氫俊鍧囪缁忚繃姝ら槻鐏銆傞槻鐏 鑻辫涓篺irewall 銆婅嫳姹夎瘉鍒告姇璧勮瘝鍏搞嬬殑瑙i噴涓猴細閲戣瀺鏈烘瀯鍐呴儴灏嗛摱琛屼笟鍔′笌璇佸埜涓氬姟涓ユ牸鍖哄垎寮鏉ョ殑娉曞緥灞忛殰锛屾棬鍦ㄩ槻姝㈠彲鑳藉嚭鐜扮殑鍐呭箷娑堟伅鍏变韩绛変笉鍏钩浜ゆ槗鍑虹幇銆備娇鐢ㄩ槻鐏姣斿柣涓嶈寮曠伀鐑ц韩銆
  • ...鏈夋病鏈夎瘧鏂囬兘鍙互銆傝姹缈昏瘧杩囧悗涓嶅皯浜5000瀛銆
    绛旓細姹備竴绡囧叧浜庢暟鎹簱鐨勬瘯璁澶栨枃缈昏瘧,鏈夋病鏈夎瘧鏂囬兘鍙互銆傝姹傜炕璇戣繃鍚庝笉灏戜簬5000瀛銆  鎴戞潵绛 棣栭〉 鍦ㄩ棶 鍏ㄩ儴闂 濞变箰浼戦棽 娓告垙 鏃呮父 鏁欒偛鍩硅 閲戣瀺璐㈢粡 鍖荤枟鍋ュ悍 绉戞妧 瀹剁數鏁扮爜 鏀跨瓥娉曡 鏂囧寲鍘嗗彶 鏃跺皻缇庡 鎯呮劅蹇冪悊 姹借溅 鐢熸椿 鑱屼笟 姣嶅┐ 涓夊啘 浜掕仈缃 鐢熶骇鍒堕 鍏朵粬 鏃ユ姤 ...
  • 姹備竴绡囧湡鏈ㄥ伐绋澶栨枃鏂囩尞缈昏瘧 鑻辫姹夎閮借璋㈣阿
    绛旓細姹備竴绡囧湡鏈ㄥ伐绋澶栨枃鏂囩尞缈昏瘧鑻辫姹夎閮借璋㈣阿3000瀛楁补绠便835877276鍝ュ摜浠彲浠ュ崟鐙彂娌圭鍚楁垜涓鍫嗗悓瀛﹂兘鍦ㄧ櫨搴︽湁鐨勫凡缁忕湅鍒拌繖涓笘瀛愪簡... 姹備竴绡囧湡鏈ㄥ伐绋嬪鏂囨枃鐚炕璇 鑻辫姹夎閮借璋㈣阿 3000瀛 娌圭銆 835877276鍝ュ摜浠 鍙互鍗曠嫭鍙戞补 绠卞悧 鎴戜竴鍫嗗悓瀛﹂兘鍦ㄧ櫨搴 鏈夌殑宸茬粡鐪嬪埌杩欎釜甯栧瓙浜 灞曞紑  鎴戞潵绛 2...
  • 璺眰澶栨枃缈昏瘧!
    绛旓細涓婇潰鑻辨枃缈昏瘧 濉戞枡鐨勮鑹 鍦ㄤ汉绫荤殑鍋ュ悍鏂归潰鐨勫鏂欎笉淇濆仴鐨勪娇鐢ㄥ拰澶勭悊鍜屽畠鐨勬晥鏋滃凡缁忓彉寰楀叧蹇冪殑涓涓墿璐ㄣ傚綋浠栦滑鐨勮壊绱犲寘鍚珮搴︽湁姣掔殑閲嶉噾灞炵殑鏃跺 , 褰╁鏂欐槸鏈夊鐨勩備竴浜涘湪濉戞枡涓鍙戠幇鐨勬湁瀹抽噾灞炴槸閾滐紝棰嗗紩锛岄摤锛岄挻锛岀鍜岄晧銆傚湪澶ч儴鍒嗘柟闈娇濉戞枡宸茬粡琚硶寰嬩笂绂佹鐨勫浗瀹讹紝褰╄壊宸ヤ笟鍖栦簡銆 鍦ㄥ嵃搴︼紝 ...
  • 鐢靛瓙鍟嗗姟 澶栨枃缈昏瘧
    绛旓細Basic concepts 浠涔堟槸鐢靛瓙鍟嗗姟鍛紝璇寸櫧浜嗗氨鏄數瀛愭槸鎵嬫锛屽晢鍔℃槸鐩殑銆 What is e-commerce it, saying that white is the Electronics is a means, business is the goal. 鐢靛瓙鍟嗗姟锛鑻辨枃鏄疎lectronic Commerce锛岀畝绉癊C銆 E-commerce, English is the Electronic Commerce, referred to as EC. 鐢靛瓙...
  • 扩展阅读:实时同声翻译app ... 免费的实时翻译软件 ... 免费翻外国墙软件 ... 英转中翻译器 ... 免费的翻译器 ... 在线翻译入口 ... 出国必备同声翻译app ... 中文翻越南语翻译器 ... 免费古文翻译器 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网