椭圆,圆,双曲线,抛物线各方程式的通式是什么, 椭圆,双曲线,抛物线分别得通径公式 是什么

\u692d\u5706\uff0c\u5706\uff0c\u53cc\u66f2\u7ebf\uff0c\u629b\u7269\u7ebf\u5404\u65b9\u7a0b\u5f0f\u7684\u901a\u5f0f\u662f\u4ec0\u4e48\uff0c

1.\u692d\u5706\uff1ax^2/a^2+y^2/b^2=1 \u7126\u70b9\uff08c\uff0c0\uff09\uff08-c\uff0c0\uff09
\u692d\u5706\u7684\u6807\u51c6\u65b9\u7a0b\u6709\u4e24\u79cd\uff0c\u53d6\u51b3\u4e8e\u7126\u70b9\u6240\u5728\u7684\u5750\u6807\u8f74\uff1a
1\uff09\u7126\u70b9\u5728X\u8f74\u65f6\uff0c\u6807\u51c6\u65b9\u7a0b\u4e3a\uff1ax^2/a^2+y^2/b^2=1 (a>b>0)
2\uff09\u7126\u70b9\u5728Y\u8f74\u65f6\uff0c\u6807\u51c6\u65b9\u7a0b\u4e3a\uff1ax^2/b^2+y^2/a^2=1 (a>b>0)
\u5176\u4e2da>0\uff0cb>0\u3002a\u3001b\u4e2d\u8f83\u5927\u8005\u4e3a\u692d\u5706\u957f\u534a\u8f74\u957f\uff0c\u8f83\u77ed\u8005\u4e3a\u77ed\u534a\u8f74\u957f\uff08\u692d\u5706\u6709\u4e24\u6761\u5bf9\u79f0\u8f74\uff0c\u5bf9\u79f0\u8f74\u88ab\u692d\u5706\u6240\u622a\uff0c\u6709\u4e24\u6761\u7ebf\u6bb5\uff0c\u5b83\u4eec\u7684\u4e00\u534a\u5206\u522b\u53eb\u692d\u5706\u7684\u957f\u534a\u8f74\u548c\u77ed\u534a\u8f74\u6216\u534a\u957f\u8f74\u548c\u534a\u77ed\u8f74\uff09\u5f53a>b\u65f6\uff0c\u7126\u70b9\u5728x\u8f74\u4e0a\uff0c\u7126\u8ddd\u4e3a2*(a^2-b^2)^0.5\uff0c\u7126\u8ddd\u4e0e\u957f.\u77ed\u534a\u8f74\u7684\u5173\u7cfb:b^2=a^2-c^2 ,\u51c6\u7ebf\u65b9\u7a0b\u662fx=a^2/c\u548cx=-a^2/c
\u53c8\u53ca\uff1a\u5982\u679c\u4e2d\u5fc3\u5728\u539f\u70b9\uff0c\u4f46\u7126\u70b9\u7684\u4f4d\u7f6e\u4e0d\u660e\u786e\u5728X\u8f74\u6216Y\u8f74\u65f6\uff0c\u65b9\u7a0b\u53ef\u8bbe\u4e3amx^2+ny^2=1(m\uff1e0\uff0cn\uff1e0\uff0cm\u2260n)\u3002\u65e2\u6807\u51c6\u65b9\u7a0b\u7684\u7edf\u4e00\u5f62\u5f0f\u3002
\u692d\u5706\u7684\u9762\u79ef\u662f\u03c0ab\u3002\u692d\u5706\u53ef\u4ee5\u770b\u4f5c\u5706\u5728\u67d0\u65b9\u5411\u4e0a\u7684\u62c9\u4f38\uff0c\u5b83\u7684\u53c2\u6570\u65b9\u7a0b\u662f\uff1ax=acos\u03b8 \uff0c y=bsin\u03b8
\u6807\u51c6\u5f62\u5f0f\u7684\u692d\u5706\u5728x0\uff0cy0\u70b9\u7684\u5207\u7ebf\u5c31\u662f \uff1a xx0/a^2+yy0/b^2=1
2.\u5706\uff1ax^2+y^2+Dx+Ey+F=0 \u5706\u5fc3\uff08-D/2,-E/2)
X^2+Y^2=1 \u88ab\u79f0\u4e3a1\u5355\u4f4d\u5706
x^2+y^2=r^2\uff0c\u5706\u5fc3O\uff080\uff0c0\uff09\uff0c\u534a\u5f84r\uff1b
(x-a)^2+(y-b)^2=r^2\uff0c\u5706\u5fc3O\uff08a\uff0cb\uff09\uff0c\u534a\u5f84r\u3002
3.\u53cc\u66f2\u7ebf\uff1ax^2/a^2-y^2/b^2=1 \u7126\u70b9\uff08c\uff0c0\uff09\uff08-c\uff0c0\uff09
\u5728\u5e73\u9762\u76f4\u89d2\u5750\u6807\u7cfb\u4e2d\uff0c\u4e8c\u5143\u4e8c\u6b21\u65b9\u7a0bh(x,y)=ax^2+bxy+cy^2+dx+ey+f=0\u6ee1\u8db3\u4ee5\u4e0b\u6761\u4ef6\u65f6\uff0c\u5176\u56fe\u50cf\u4e3a\u53cc\u66f2\u7ebf\u3002
1. a,b,c\u4e0d\u90fd\u662f0
2. b^2 - 4ac > 0
\u5728\u9ad8\u4e2d\u7684\u89e3\u6790\u51e0\u4f55\u4e2d\uff0c\u5b66\u5230\u7684\u662f\u53cc\u66f2\u7ebf\u7684\u4e2d\u5fc3\u5728\u539f\u70b9\uff0c\u56fe\u50cf\u5173\u4e8ex\uff0cy\u8f74\u5bf9\u79f0\u7684\u60c5\u5f62\u3002\u8fd9\u65f6\u53cc\u66f2\u7ebf\u7684\u65b9\u7a0b\u9000\u5316\u4e3a\uff1ax^2/p^2 - y^2/q^2 = 1\u3002
4.\u629b\u7269\u7ebf\uff1ay^2=2px\uff08p>0) \u51c6\u7ebfx=-p/2
\u629b\u7269\u7ebf\u65b9\u7a0b\u5c31\u662f\u6307\u629b\u7269\u7ebf\u7684\u8f68\u8ff9\u65b9\u7a0b\uff0c\u662f\u4e00\u79cd\u7528\u65b9\u7a0b\u6765\u8868\u793a\u629b\u7269\u7ebf\u7684\u65b9\u6cd5\u3002\u5728\u51e0\u4f55\u5e73\u9762\u4e0a\u53ef\u4ee5\u6839\u636e\u629b\u7269\u7ebf\u7684\u65b9\u7a0b\u753b\u51fa\u629b\u7269\u7ebf\u3002
y²=2px,(P>0\uff09\uff0c\u51c6\u7ebf\uff1ax=-1/2 P,\u7126\u70b9\uff1ax=1/2 p
\u65b9\u7a0b\u7684\u5177\u4f53\u8868\u8fbe\u5f0f\u4e3ay=a*x*x+b*x+c
\u2474a\u22600
\u2475a>0\uff0c\u5219\u629b\u7269\u7ebf\u5f00\u53e3\u671d\u4e0a\uff1ba<0\uff0c\u5219\u629b\u7269\u7ebf\u5f00\u53e3\u671d\u4e0b\uff1b
\u2476\u6781\u503c\u70b9\uff1a\uff08-b/2a\uff0c(4ac-b*b)/4a\uff09\uff1b
\u2477\u0394=b*b-4ac,
\u0394>0\uff0c\u56fe\u8c61\u4e0ex\u8f74\u4ea4\u4e8e\u4e24\u70b9\uff1a
\uff08[-b-\u221a\u0394]/2a\uff0c0\uff09\u548c\uff08[-b+\u221a\u0394]/2a\uff0c0\uff09\uff1b
\u0394=0\uff0c\u56fe\u8c61\u4e0ex\u8f74\u4ea4\u4e8e\u4e00\u70b9\uff1a
\uff08-b/2a\uff0c0\uff09\uff1b
\u0394<0\uff0c\u56fe\u8c61\u4e0ex\u8f74\u65e0\u4ea4\u70b9\uff1b
\u82e5\u629b\u7269\u7ebf\u4ea4y\u8f74\u4e3a\u6b63\u534a\u8f74\uff0c\u5219c>0\u3002\u82e5\u629b\u7269\u7ebf\u4ea4y\u8f74\u4e3a\u8d1f\u534a\u8f74\uff0c\u5219c<0\u3002

\u692d\u5706\u901a\u5f84\u516c\u5f0f2b\u7684\u5e73\u65b9/a\u3002
\u53cc\u66f2\u7ebf\u901a\u5f84\u516c\u5f0f\u4e5f\u662f2b\u7684\u5e73\u65b9/a\u3002
\u629b\u7269\u7ebf\u901a\u5f84\u516c\u5f0f\u662f2P\u3002
\u8054\u7ed3\u692d\u5706\u4e0a\u4efb\u610f\u4e24\u70b9\u7684\u7ebf\u6bb5\u53eb\u4f5c\u8fd9\u4e2a\u692d\u5706\u7684\u5f26\uff0c\u901a\u8fc7\u7126\u70b9\u7684\u5f26\u53eb\u4f5c\u8fd9\u4e2a\u692d\u5706\u7684\u7126\u70b9\u5f26(\u6240\u4ee5\u692d\u5706\u7684\u957f\u8f74\u4e5f\u662f\u7126\u70b9\u5f26)\uff0c\u548c\u957f\u8f74\u5782\u76f4\u7684\u7126\u70b9\u5f26\u53eb\u4f5c\u8fd9\u4e2a\u692d\u5706\u7684\u901a\u5f84(\u6b63\u7126\u5f26)\u3002
\u8054\u7ed3\u692d\u5706\u4e0a\u4efb\u610f\u4e00\u70b9\u4e0e\u4e00\u4e2a\u7126\u70b9\u7684\u7ebf\u6bb5(\u6216\u8fd9\u7ebf\u6bb5\u7684\u957f)\u53eb\u4f5c\u692d\u5706\u5728\u8fd9\u70b9\u7684\u7126\u534a\u5f84\uff0c\u692d\u5706\u4e0a\u4efb\u610f\u4e00\u70b9\u6709\u4e24\u6761\u7126\u534a\u5f84\u3002

\u6269\u5c55\u8d44\u6599
\u692d\u5706\u7684\u51e0\u4f55\u6027\u8d28
1\u3001\u8303\u56f4\uff1a\u7126\u70b9\u5728x\u8f74\u4e0a-a\u2264x \u2264a\uff0c-b\u2264y\u2264b\uff1b\u7126\u70b9\u5728y\u8f74\u4e0a-b\u2264x \u2264b\uff0c-a\u2264y\u2264a\u3002
2\u3001\u5bf9\u79f0\u6027\uff1a\u5173\u4e8eX\u8f74\u5bf9\u79f0\uff0cY\u8f74\u5bf9\u79f0\uff0c\u5173\u4e8e\u539f\u70b9\u4e2d\u5fc3\u5bf9\u79f0\u3002
3\u3001\u9876\u70b9\uff1a\uff08a\uff0c0\uff09\uff08-a\uff0c0\uff09\uff080\uff0cb\uff09\uff080\uff0c-b\uff09\u3002
4\u3001\u79bb\u5fc3\u7387\u8303\u56f4\uff1a0<e<1\u3002
5\u3001\u79bb\u5fc3\u7387\u8d8a\u5c0f\u8d8a\u63a5\u8fd1\u4e8e\u5706\uff0c\u8d8a\u5927\u5219\u692d\u5706\u5c31\u8d8a\u6241\u3002
6\u3001\u7126\u70b9\uff08\u5f53\u4e2d\u5fc3\u4e3a\u539f\u70b9\u65f6\uff09\uff1a\uff08-c\uff0c0\uff09\uff0c\uff08c\uff0c0\uff09\u6216\uff080\uff0cc\uff09\uff0c\uff080\uff0c-c\uff09\u3002
\u53c2\u8003\u8d44\u6599\u6765\u6e90\uff1a\u767e\u5ea6\u767e\u79d1-\u901a\u5f84

1.椭圆:x^2/a^2+y^2/b^2=1 焦点(c,0)(-c,0) \x0d\x0a椭圆的标准方程有两种,取决于焦点所在的坐标轴: \x0d\x0a 1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0) \x0d\x0a 2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1 (a>b>0) \x0d\x0a 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长.短半轴的关系:b^2=a^2-c^2 ,准线方程是x=a^2/c和x=-a^2/c \x0d\x0a 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。既标准方程的统一形式。 \x0d\x0a 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ \x0d\x0a 标准形式的椭圆在x0,y0点的切线就是 : xx0/a^2+yy0/b^2=1\x0d\x0a2.圆:x^2+y^2+Dx+Ey+F=0 圆心(-D/2,-E/2) \x0d\x0aX^2+Y^2=1 被称为1单位圆\x0d\x0ax^2+y^2=r^2,圆心O(0,0),半径r;\x0d\x0a(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。\x0d\x0a3.双曲线:x^2/a^2-y^2/b^2=1 焦点(c,0)(-c,0)\x0d\x0a在平面直角坐标系中,二元二次方程h(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线。\x0d\x0a1. a,b,c不都是0\x0d\x0a2. b^2 - 4ac > 0\x0d\x0a在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形。这时双曲线的方程退化为:x^2/p^2 - y^2/q^2 = 1。\x0d\x0a4.抛物线:y^2=2px(p>0) 准线x=-p/2\x0d\x0a抛物线方程就是指抛物线的轨迹方程,是一种用方程来表示抛物线的方法。在几何平面上可以根据抛物线的方程画出抛物线。\x0d\x0ay²=2px,(P>0),准线:x=-1/2 P,焦点:x=1/2 p\x0d\x0a方程的具体表达式为y=a*x*x+b*x+c\x0d\x0a⑴a≠0\x0d\x0a⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;\x0d\x0a⑶极值点:(-b/2a,(4ac-b*b)/4a);\x0d\x0a⑷Δ=b*b-4ac,\x0d\x0aΔ>0,图象与x轴交于两点:\x0d\x0a([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);\x0d\x0aΔ=0,图象与x轴交于一点:\x0d\x0a(-b/2a,0);\x0d\x0aΔ<0,图象与x轴无交点;\x0d\x0a若抛物线交y轴为正半轴,则c>0。若抛物线交y轴为负半轴,则c<0。

  • 鍦嗛敟鏇茬嚎鏂圭▼ 鏍囧噯鏂圭▼鍜屼竴鑸柟绋
    绛旓細1銆佸渾閿ユ洸绾垮寘鎷鍦嗭紝妞渾锛屽弻鏇茬嚎锛屾姏鐗╃嚎銆2銆佸渾 鏍囧噯鏂圭▼:(x-a)^2+(y-b)^2=r^2,鍦嗗績(a,b),鍗婂緞=r>0 绂诲績鐜:e=0(娉ㄦ剰:鍦嗙殑鏂圭▼鐨勭蹇冪巼涓0锛屼絾绂诲績鐜囩瓑浜0鐨勮建杩逛笉涓瀹氭槸鍦嗭紝杩樺彲鑳芥槸涓涓偣(c,0))涓鑸柟绋:x^2+y^2+Dx+Ey+F=0,鍦嗗績(-D/2,-E/2),鍗婂緞r=(1/2)鈭(D...
  • 鍦嗛敟鏇茬嚎鏈夊摢浜涗竴鑸鏂圭▼?
    绛旓細鍦嗛敟鏇茬嚎鏄钩闈笂鐨勪竴绫鏇茬嚎锛鍖呮嫭妞渾銆鍙屾洸绾鍜鎶涚墿绾銆傛瘡涓渾閿ユ洸绾块兘鏈夎嚜宸辩殑鐗瑰畾鍏紡銆1. 妞渾鐨勪竴鑸鏂圭▼锛氭き鍦嗙殑涓鑸柟绋嬫槸锛(x-h)^2/a^2 + (y-k)^2/b^2 =1 鍏朵腑锛(h, k)鏄き鍦嗙殑涓績鍧愭爣锛宎鍜宐鍒嗗埆鏄き鍦嗗湪x杞村拰y杞翠笂鐨勫崐闀胯酱锛堟垨鍗婂緞锛夈2. 鍙屾洸绾跨殑涓鑸柟绋嬶細鍙屾洸绾跨殑涓鑸...
  • 鍦嗛敟鏇茬嚎鐨鏂圭▼鏄粈涔?
    绛旓細鍦嗛敟鏇茬嚎鐨勫熀鏈鏂圭▼鍖呮嫭鍦嗐妞渾銆鍙屾洸绾鍜鎶涚墿绾鐨勬柟绋嬨傚渾鐨勬柟绋嬩负锛(x-a)^2 + (y-b)^2 = r^2锛屽叾涓(a, b)鏄渾蹇冨潗鏍囷紝r鏄崐寰勩傛き鍦嗙殑鏂圭▼涓猴細x^2/a^2 + y^2/b^2 = 1锛屽叾涓璦鍜宐鍒嗗埆鏄き鍦嗙殑鍗婇暱杞村拰鍗婄煭杞达紝涓攁 > b銆傚弻鏇茬嚎鐨勬柟绋嬩负锛歺^2/a^2 - y^2/b^2 = 1...
  • 瀵绘眰鍦 妞渾 鍙屾洸绾鐨勭浉鍏鏂圭▼瓒婅缁嗚秺濂姐
    绛旓細鐢ㄥ瀭鐩翠笌閿ヨ酱鐨勫钩闈㈠幓鎴渾閿ワ紝寰楀埌鐨勬槸鍦嗭紱鎶婂钩闈㈡笎娓愬炬枩锛屽緱鍒妞渾锛涘綋骞抽潰鍜屽渾閿ョ殑涓鏉℃瘝绾垮钩琛屾椂锛屽緱鍒鎶涚墿绾锛涘綋骞抽潰鍐嶅炬枩涓浜涘氨鍙互寰楀埌鍙屾洸绾銆傞樋娉㈢綏灏兼浘鎶婃き鍦嗗彨鈥滀簭鏇茬嚎鈥濓紝鎶婂弻鏇茬嚎鍙仛鈥滆秴鏇茬嚎鈥濓紝鎶婃姏鐗╃嚎鍙仛鈥滈綈鏇茬嚎鈥濄 路鍦嗛敟鏇茬嚎鐨勫弬鏁鏂圭▼鍜岀洿瑙掑潗鏍囨柟绋嬶細 1锛夋き鍦 鍙傛暟鏂圭▼锛歺...
  • 璋佽兘鍛婅瘔鎴妞渾 鍙屾洸绾挎姏鐗╃嚎鐒︾偣鍒嗗埆鍦▁杞磞杞寸殑鍙傛暟鏂圭▼鍟
    绛旓細锛坋涓虹蹇冪巼銆倄涓鸿鐐圭殑妯潗鏍囷紝灏忎簬0鍙栧姞鍙凤紝澶т簬0鍙栧噺鍙凤級鎶涚墿绾锛歱/2+x 锛堜互y^2=2px涓轰緥锛変互涓妞渾鍜鍙屾洸绾浠ョ劍鐐瑰湪x杞翠笂涓轰緥銆傚鸡闀垮叕寮忥細璁惧鸡鎵鍦ㄧ洿绾跨殑鏂滅巼涓簁,鍒欏鸡闀=鏍瑰彿[锛1+k^2锛*(x1-x2)^2]=鏍瑰彿[锛1+k^2锛*((x1+x2)^2-4*x1*x2)]鐢ㄧ洿绾跨殑鏂圭▼涓庡渾閿ユ洸绾跨殑鏂圭▼...
  • 姹傛垚鑰冩暟瀛︿腑鍦,妞渾,鍙屾洸绾鍜鎶涚墿绾鐨勪富瑕佸叕寮
    绛旓細妞渾閫氬緞锛堝畾涔夛細鍦嗛敟鏇茬嚎锛堥櫎鍦嗗锛変腑锛岃繃鐒︾偣骞跺瀭鐩翠簬杞寸殑寮︼級鍏紡锛2b^2/a 妞渾鐨勬枩鐜囧叕寮忋杩囨き鍦嗕笂x^2/a^2+y^2/b^2涓婁竴鐐癸紙x锛寉锛夌殑鍒囩嚎鏂滅巼涓篵^2*X/a^2y 鎶涚墿绾鐨勬爣鍑鏂圭▼鍙冲紑鍙f姏鐗╃嚎:y^2=2px 宸﹀紑鍙f姏鐗╃嚎:y^2=-2px 涓婂紑鍙f姏鐗╃嚎:x^2=2py 涓嬪紑鍙f姏鐗╃嚎:x^2=-2py p涓...
  • 鎶涚墿绾銆鍙屾洸绾銆妞渾鏂圭▼鎬庝箞鎺?
    绛旓細鍑嗙嚎鏂圭▼ x=a^2/c x=-a^2/c 璁鍙屾洸绾涓奝鐐瑰潗鏍囷紙x0锛寉0锛塩/a=(xo+p/2) /涓≒F涓>1 鎶涚墿绾锛堜互寮鍙e悜鍙充负渚嬶級 y^2=2px锛坧>0锛夛紙浜﹀彲瀹氫箟鎴愶細褰撳姩鐐筆鍒板畾鐐筄鍜屽埌瀹氱洿绾縓=Xo鐨勮窛绂讳箣姣旀亽绛変簬1鏃讹紝璇ョ洿绾挎槸鎶涚墿绾跨殑鍑嗙嚎銆傦級鍑嗙嚎鏂圭▼ x=-p/2 璁炬姏鐗╃嚎涓奝鐐瑰潗鏍囷紙x0锛寉0锛塩/a...
  • 绾挎у嚑浣曢噷鐨鍦,鍙屾洸绾,鎶涚墿绾鐨勫叕寮忔槸浠涔堝晩,鍏崇郴鍛?
    绛旓細绗﹀彿锛歗骞虫柟 /闄や互 鍦嗭細(X-h)^2+(Y-k)^2=R^2 鍦嗗績鍧愭爣(h,k)锛屽崐寰凴 鍙屾洸绾匡細Y=1/X 鎶涚墿绾匡細Y=aX^2+bX+c 鍦嗘槸闂悎鏇茬嚎锛浜屽厓浜屾鏂锛屽弻鏇茬嚎鏈変袱鏉℃笎杩涚嚎锛屼竴鍏冨弽姣鏂圭▼锛屾姏鐗╃嚎鍙湁涓涓紑鍙f柟鍚戯紝涓鍏冧簩娆℃柟
  • 楂樹腑鏁板鍦嗛敟鏇茬嚎鍏紡鎬荤粨
    绛旓細鍦嗛敟鏇茬嚎鍏紡鐭ヨ瘑鐐规荤粨銆傚渾閿ユ洸绾 妞渾 鍙屾洸绾 鎶涚墿绾銆傛爣鍑鏂圭▼ x²/a²+y²/b²=1(a>b>0) x²/a²-y²/b²=1(a>0,b>0) y²=2px(p>0)銆傝寖鍥 x鈭圼-a,a] x鈭(-鈭烇紝-a]鈭猍a,+鈭) x鈭圼0,+鈭)銆倅鈭圼-b,b] y鈭圧 ...
  • 姹傚叧浜庨珮涓暟瀛︾殑鍦,妞渾,鎶涚墿绾,鍙屾洸绾,鎶涚墿绾鐨勫叕寮,璋㈣阿鍟︺傛渶濂...
    绛旓細棣栧厛锛氳冭檻鍦嗛敟鏇茬嚎鐨勫畾涔 姣斿锛屾き鍦鏄竴鍔ㄧ偣p鍒颁袱瀹氱偣f1,f2璺濈涔嬪拰涓轰竴涓父鏁扮殑杞ㄨ抗锛岄偅涔堟湁pf1+pf2=2a 鍏舵锛屽紕娓呮鐒︾偣鐨勪綅缃紝姣斿鍦▁杞翠笂杩樻槸y杞翠笂 鏈鍚庯細杩愮敤鍦嗛敟鏇茬嚎鐨勬ц川瑙d綋锛屾瘮濡傛き鍦嗭細a^-b^=c^,鍙屾洸绾锛歛^+b^=c^锛岀蹇冪巼e=c/a绛 鎬荤殑鏉ヨ灏辨槸鐗㈣鍦嗛敟鏇茬嚎鐨勫畾涔夛紝鎬ц川锛...
  • 扩展阅读:椭圆公式大全表 ... 抛物线所有公式大全 ... 椭圆双曲线公式大全 ... 椭圆常用6个公式 ... 椭圆双曲线共焦点秒杀 ... 圆锥曲线大全图片 ... 抛物线知识点归纳图 ... 双曲线二级结论完整版 ... 高中数学抛物线双曲线椭圆 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网