关于介绍科学家牛顿信息的英语短文? 介绍科学家的英语文章

\u6211\u9700\u8981\u4e00\u7bc7\u4ecb\u7ecd\u79d1\u5b66\u5bb6\u7684\u82f1\u6587\u6587\u7ae0

\u4ecb\u7ecd\u827e\u8428\u514b \u725b\u987f\u7684
Isaac Newton's Life


Special thanks to the Microsoft Corporation for their contribution to our site. The following information came from Microsoft Encarta.

I INTRODUCTION
Newton, Sir Isaac (1642-1727), mathematician and physicist, one of the foremost scientific intellects of all time. Born at Woolsthorpe, near Grantham in Lincolnshire, where he attended school, he entered Cambridge University in 1661; he was elected a Fellow of Trinity College in 1667, and Lucasian Professor of Mathematics in 1669. He remained at the university, lecturing in most years, until 1696. Of these Cambridge years, in which Newton was at the height of his creative power, he singled out 1665-1666 (spent largely in Lincolnshire because of plague in Cambridge) as "the prime of my age for invention". During two to three years of intense mental effort he prepared Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) commonly known as the Principia, although this was not published until 1687.

As a firm opponent of the attempt by King James II to make the universities into Catholic institutions, Newton was elected Member of Parliament for the University of Cambridge to the Convention Parliament of 1689, and sat again in 1701-1702. Meanwhile, in 1696 he had moved to London as Warden of the Royal Mint. He became Master of the Mint in 1699, an office he retained to his death. He was elected a Fellow of the Royal Society of London in 1671, and in 1703 he became President, being annually re-elected for the rest of his life. His major work, Opticks, appeared the next year; he was knighted in Cambridge in 1705.

As Newtonian science became increasingly accepted on the Continent, and especially after a general peace was restored in 1714, following the War of the Spanish Succession, Newton became the most highly esteemed natural philosopher in Europe. His last decades were passed in revising his major works, polishing his studies of ancient history, and defending himself against critics, as well as carrying out his official duties. Newton was modest, diffident, and a man of simple tastes. He was angered by criticism or opposition, and harboured resentment; he was harsh towards enemies but generous to friends. In government, and at the Royal Society, he proved an able administrator. He never married and lived modestly, but was buried with great pomp in Westminster Abbey.

Newton has been regarded for almost 300 years as the founding examplar of modern physical science, his achievements in experimental investigation being as innovative as those in mathematical research. With equal, if not greater, energy and originality he also plunged into chemistry, the early history of Western civilization, and theology; among his special studies was an investigation of the form and dimensions, as described in the Bible, of Solomon's Temple in Jerusalem.

II OPTICS
In 1664, while still a student, Newton read recent work on optics and light by the English physicists Robert Boyle and Robert Hooke; he also studied both the mathematics and the physics of the French philosopher and scientist Ren\u00e9 Descartes. He investigated the refraction of light by a glass prism; developing over a few years a series of increasingly elaborate, refined, and exact experiments, Newton discovered measurable, mathematical patterns in the phenomenon of colour. He found white light to be a mixture of infinitely varied coloured rays (manifest in the rainbow and the spectrum), each ray definable by the angle through which it is refracted on entering or leaving a given transparent medium. He correlated this notion with his study of the interference colours of thin films (for example, of oil on water, or soap bubbles), using a simple technique of extreme acuity to measure the thickness of such films. He held that light consisted of streams of minute particles. From his experiments he could infer the magnitudes of the transparent "corpuscles" forming the surfaces of bodies, which, according to their dimensions, so interacted with white light as to reflect, selectively, the different observed colours of those surfaces.

The roots of these unconventional ideas were with Newton by about 1668; when first expressed (tersely and partially) in public in 1672 and 1675, they provoked hostile criticism, mainly because colours were thought to be modified forms of homogeneous white light. Doubts, and Newton's rejoinders, were printed in the learned journals. Notably, the scepticism of Christiaan Huygens and the failure of the French physicist Edm\u00e9 Mariotte to duplicate Newton's refraction experiments in 1681 set scientists on the Continent against him for a generation. The publication of Opticks, largely written by 1692, was delayed by Newton until the critics were dead. The book was still imperfect: the colours of diffraction defeated Newton. Nevertheless, Opticks established itself, from about 1715, as a model of the interweaving of theory with quantitative experimentation.

III MATHEMATICS
In mathematics too, early brilliance appeared in Newton's student notes. He may have learnt geometry at school, though he always spoke of himself as self-taught; certainly he advanced through studying the writings of his compatriots William Oughtred and John Wallis, and of Descartes and the Dutch school. Newton made contributions to all branches of mathematics then studied, but is especially famous for his solutions to the contemporary problems in analytical geometry of drawing tangents to curves (differentiation) and defining areas bounded by curves (integration). Not only did Newton discover that these problems were inverse to each other, but he discovered general methods of resolving problems of curvature, embraced in his "method of fluxions" and "inverse method of fluxions", respectively equivalent to Leibniz's later differential and integral calculus. Newton used the term "fluxion" (from Latin meaning "flow") because he imagined a quantity "flowing" from one magnitude to another. Fluxions were expressed algebraically, as Leibniz's differentials were, but Newton made extensive use also (especially in the Principia) of analogous geometrical arguments. Late in life, Newton expressed regret for the algebraic style of recent mathematical progress, preferring the geometrical method of the Classical Greeks, which he regarded as clearer and more rigorous.

Newton's work on pure mathematics was virtually hidden from all but his correspondents until 1704, when he published, with Opticks, a tract on the quadrature of curves (integration) and another on the classification of the cubic curves. His Cambridge lectures, delivered from about 1673 to 1683, were published in 1707.

The Calculus Priority Dispute
Newton had the essence of the methods of fluxions by 1666. The first to become known, privately, to other mathematicians, in 1668, was his method of integration by infinite series. In Paris in 1675 Gottfried Wilhelm Leibniz independently evolved the first ideas of his differential calculus, outlined to Newton in 1677. Newton had already described some of his mathematical discoveries to Leibniz, not including his method of fluxions. In 1684 Leibniz published his first paper on calculus; a small group of mathematicians took up his ideas.

In the 1690s Newton's friends proclaimed the priority of Newton's methods of fluxions. Supporters of Leibniz asserted that he had communicated the differential method to Newton, although Leibniz had claimed no such thing. Newtonians then asserted, rightly, that Leibniz had seen papers of Newton's during a London visit in 1676; in reality, Leibniz had taken no notice of material on fluxions. A violent dispute sprang up, part public, part private, extended by Leibniz to attacks on Newton's theory of gravitation and his ideas about God and creation; it was not ended even by Leibniz's death in 1716. The dispute delayed the reception of Newtonian science on the Continent, and dissuaded British mathematicians from sharing the researches of Continental colleagues for a century.

IV MECHANICS AND GRAVITATION
According to the well-known story, it was on seeing an apple fall in his orchard at some time during 1665 or 1666 that Newton conceived that the same force governed the motion of the Moon and the apple. He calculated the force needed to hold the Moon in its orbit, as compared with the force pulling an object to the ground. He also calculated the centripetal force needed to hold a stone in a sling, and the relation between the length of a pendulum and the time of its swing. These early explorations were not soon exploited by Newton, though he studied astronomy and the problems of planetary motion.

Correspondence with Hooke (1679-1680) redirected Newton to the problem of the path of a body subjected to a centrally directed force that varies as the inverse square of the distance; he determined it to be an ellipse, so informing Edmond Halley in August 1684. Halley's interest led Newton to demonstrate the relationship afresh, to compose a brief tract on mechanics, and finally to write the Principia.

Book I of the Principia states the foundations of the science of mechanics, developing upon them the mathematics of orbital motion round centres of force. Newton identified gravitation as the fundamental force controlling the motions of the celestial bodies. He never found its cause. To contemporaries who found the idea of attractions across empty space unintelligible, he conceded that they might prove to be caused by the impacts of unseen particles.

Book II inaugurates the theory of fluids: Newton solves problems of fluids in movement and of motion through fluids. From the density of air he calculated the speed of sound waves.

Book III shows the law of gravitation at work in the universe: Newton demonstrates it from the revolutions of the six known planets, including the Earth, and their satellites. However, he could never quite perfect the difficult theory of the Moon's motion. Comets were shown to obey the same law; in later editions, Newton added conjectures on the possibility of their return. He calculated the relative masses of heavenly bodies from their gravitational forces, and the oblateness of Earth and Jupiter, already observed. He explained tidal ebb and flow and the precession of the equinoxes from the forces exerted by the Sun and Moon. All this was done by exact computation.

Newton's work in mechanics was accepted at once in Britain, and universally after half a century. Since then it has been ranked among humanity's greatest achievements in abstract thought. It was extended and perfected by others, notably Pierre Simon de Laplace, without changing its basis and it survived into the late 19th century before it began to show signs of failing. See Quantum Theory; Relativity.

V ALCHEMY AND CHEMISTRY
Newton left a mass of manuscripts on the subjects of alchemy and chemistry, then closely related topics. Most of these were extracts from books, bibliographies, dictionaries, and so on, but a few are original. He began intensive experimentation in 1669, continuing till he left Cambridge, seeking to unravel the meaning that he hoped was hidden in alchemical obscurity and mysticism. He sought understanding of the nature and structure of all matter, formed from the "solid, massy, hard, impenetrable, movable particles" that he believed God had created. Most importantly in the "Queries" appended to "Opticks" and in the essay "On the Nature of Acids" (1710), Newton published an incomplete theory of chemical force, concealing his exploration of the alchemists, which became known a century after his death.

VI HISTORICAL AND CHRONOLOGICAL STUDIES
Newton owned more books on humanistic learning than on mathematics and science; all his life he studied them deeply. His unpublished "classical scholia"\u2014explanatory notes intended for use in a future edition of the Principia\u2014reveal his knowledge of pre-Socratic philosophy; he read the Fathers of the Church even more deeply. Newton sought to reconcile Greek mythology and record with the Bible, considered the prime authority on the early history of mankind. In his work on chronology he undertook to make Jewish and pagan dates compatible, and to fix them absolutely from an astronomical argument about the earliest constellation figures devised by the Greeks. He put the fall of Troy at 904 BC, about 500 years later than other scholars; this was not well received.

VII RELIGIOUS CONVICTIONS AND PERSONALITY
Newton also wrote on Judaeo-Christian prophecy, whose decipherment was essential, he thought, to the understanding of God. His book on the subject, which was reprinted well into the Victorian Age, represented lifelong study. Its message was that Christianity went astray in the 4th century AD, when the first Council of Nicaea propounded erroneous doctrines of the nature of Christ. The full extent of Newton's unorthodoxy was recognized only in the present century: but although a critic of accepted Trinitarian dogmas and the Council of Nicaea, he possessed a deep religious sense, venerated the Bible and accepted its account of creation. In late editions of his scientific works he expressed a strong sense of God's providential role in nature.

VIII PUBLICATIONS
Newton published an edition of Geographia generalis by the German geographer Varenius in 1672. His own letters on optics appeared in print from 1672 to 1676. Then he published nothing until the Principia (published in Latin in 1687; revised in 1713 and 1726; and translated into English in 1729). This was followed by Opticks in 1704; a revised edition in Latin appeared in 1706. Posthumously published writings include The Chronology of Ancient Kingdoms Amended (1728), The System of the World (1728), the first draft of Book III of the Principia, and Observations upon the Prophecies of Daniel and the Apocalypse of St John (1733).

Contributed By:
Alfred Rupert Hall

\u4ecb\u7ecd\u827e\u8428\u514b \u725b\u987f\u7684
Isaac Newton's Life


Special thanks to the Microsoft Corporation for their contribution to our site. The following information came from Microsoft Encarta.

I INTRODUCTION
Newton, Sir Isaac (1642-1727), mathematician and physicist, one of the foremost scientific intellects of all time. Born at Woolsthorpe, near Grantham in Lincolnshire, where he attended school, he entered Cambridge University in 1661; he was elected a Fellow of Trinity College in 1667, and Lucasian Professor of Mathematics in 1669. He remained at the university, lecturing in most years, until 1696. Of these Cambridge years, in which Newton was at the height of his creative power, he singled out 1665-1666 (spent largely in Lincolnshire because of plague in Cambridge) as "the prime of my age for invention". During two to three years of intense mental effort he prepared Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) commonly known as the Principia, although this was not published until 1687.

As a firm opponent of the attempt by King James II to make the universities into Catholic institutions, Newton was elected Member of Parliament for the University of Cambridge to the Convention Parliament of 1689, and sat again in 1701-1702. Meanwhile, in 1696 he had moved to London as Warden of the Royal Mint. He became Master of the Mint in 1699, an office he retained to his death. He was elected a Fellow of the Royal Society of London in 1671, and in 1703 he became President, being annually re-elected for the rest of his life. His major work, Opticks, appeared the next year; he was knighted in Cambridge in 1705.

As Newtonian science became increasingly accepted on the Continent, and especially after a general peace was restored in 1714, following the War of the Spanish Succession, Newton became the most highly esteemed natural philosopher in Europe. His last decades were passed in revising his major works, polishing his studies of ancient history, and defending himself against critics, as well as carrying out his official duties. Newton was modest, diffident, and a man of simple tastes. He was angered by criticism or opposition, and harboured resentment; he was harsh towards enemies but generous to friends. In government, and at the Royal Society, he proved an able administrator. He never married and lived modestly, but was buried with great pomp in Westminster Abbey.

Newton has been regarded for almost 300 years as the founding examplar of modern physical science, his achievements in experimental investigation being as innovative as those in mathematical research. With equal, if not greater, energy and originality he also plunged into chemistry, the early history of Western civilization, and theology; among his special studies was an investigation of the form and dimensions, as described in the Bible, of Solomon's Temple in Jerusalem.

II OPTICS
In 1664, while still a student, Newton read recent work on optics and light by the English physicists Robert Boyle and Robert Hooke; he also studied both the mathematics and the physics of the French philosopher and scientist Ren\u00e9 Descartes. He investigated the refraction of light by a glass prism; developing over a few years a series of increasingly elaborate, refined, and exact experiments, Newton discovered measurable, mathematical patterns in the phenomenon of colour. He found white light to be a mixture of infinitely varied coloured rays (manifest in the rainbow and the spectrum), each ray definable by the angle through which it is refracted on entering or leaving a given transparent medium. He correlated this notion with his study of the interference colours of thin films (for example, of oil on water, or soap bubbles), using a simple technique of extreme acuity to measure the thickness of such films. He held that light consisted of streams of minute particles. From his experiments he could infer the magnitudes of the transparent "corpuscles" forming the surfaces of bodies, which, according to their dimensions, so interacted with white light as to reflect, selectively, the different observed colours of those surfaces.

The roots of these unconventional ideas were with Newton by about 1668; when first expressed (tersely and partially) in public in 1672 and 1675, they provoked hostile criticism, mainly because colours were thought to be modified forms of homogeneous white light. Doubts, and Newton's rejoinders, were printed in the learned journals. Notably, the scepticism of Christiaan Huygens and the failure of the French physicist Edm\u00e9 Mariotte to duplicate Newton's refraction experiments in 1681 set scientists on the Continent against him for a generation. The publication of Opticks, largely written by 1692, was delayed by Newton until the critics were dead. The book was still imperfect: the colours of diffraction defeated Newton. Nevertheless, Opticks established itself, from about 1715, as a model of the interweaving of theory with quantitative experimentation.

III MATHEMATICS
In mathematics too, early brilliance appeared in Newton's student notes. He may have learnt geometry at school, though he always spoke of himself as self-taught; certainly he advanced through studying the writings of his compatriots William Oughtred and John Wallis, and of Descartes and the Dutch school. Newton made contributions to all branches of mathematics then studied, but is especially famous for his solutions to the contemporary problems in analytical geometry of drawing tangents to curves (differentiation) and defining areas bounded by curves (integration). Not only did Newton discover that these problems were inverse to each other, but he discovered general methods of resolving problems of curvature, embraced in his "method of fluxions" and "inverse method of fluxions", respectively equivalent to Leibniz's later differential and integral calculus. Newton used the term "fluxion" (from Latin meaning "flow") because he imagined a quantity "flowing" from one magnitude to another. Fluxions were expressed algebraically, as Leibniz's differentials were, but Newton made extensive use also (especially in the Principia) of analogous geometrical arguments. Late in life, Newton expressed regret for the algebraic style of recent mathematical progress, preferring the geometrical method of the Classical Greeks, which he regarded as clearer and more rigorous.

Newton's work on pure mathematics was virtually hidden from all but his correspondents until 1704, when he published, with Opticks, a tract on the quadrature of curves (integration) and another on the classification of the cubic curves. His Cambridge lectures, delivered from about 1673 to 1683, were published in 1707.

The Calculus Priority Dispute
Newton had the essence of the methods of fluxions by 1666. The first to become known, privately, to other mathematicians, in 1668, was his method of integration by infinite series. In Paris in 1675 Gottfried Wilhelm Leibniz independently evolved the first ideas of his differential calculus, outlined to Newton in 1677. Newton had already described some of his mathematical discoveries to Leibniz, not including his method of fluxions. In 1684 Leibniz published his first paper on calculus; a small group of mathematicians took up his ideas.

In the 1690s Newton's friends proclaimed the priority of Newton's methods of fluxions. Supporters of Leibniz asserted that he had communicated the differential method to Newton, although Leibniz had claimed no such thing. Newtonians then asserted, rightly, that Leibniz had seen papers of Newton's during a London visit in 1676; in reality, Leibniz had taken no notice of material on fluxions. A violent dispute sprang up, part public, part private, extended by Leibniz to attacks on Newton's theory of gravitation and his ideas about God and creation; it was not ended even by Leibniz's death in 1716. The dispute delayed the reception of Newtonian science on the Continent, and dissuaded British mathematicians from sharing the researches of Continental colleagues for a century.

IV MECHANICS AND GRAVITATION
According to the well-known story, it was on seeing an apple fall in his orchard at some time during 1665 or 1666 that Newton conceived that the same force governed the motion of the Moon and the apple. He calculated the force needed to hold the Moon in its orbit, as compared with the force pulling an object to the ground. He also calculated the centripetal force needed to hold a stone in a sling, and the relation between the length of a pendulum and the time of its swing. These early explorations were not soon exploited by Newton, though he studied astronomy and the problems of planetary motion.

Correspondence with Hooke (1679-1680) redirected Newton to the problem of the path of a body subjected to a centrally directed force that varies as the inverse square of the distance; he determined it to be an ellipse, so informing Edmond Halley in August 1684. Halley's interest led Newton to demonstrate the relationship afresh, to compose a brief tract on mechanics, and finally to write the Principia.

Book I of the Principia states the foundations of the science of mechanics, developing upon them the mathematics of orbital motion round centres of force. Newton identified gravitation as the fundamental force controlling the motions of the celestial bodies. He never found its cause. To contemporaries who found the idea of attractions across empty space unintelligible, he conceded that they might prove to be caused by the impacts of unseen particles.

Book II inaugurates the theory of fluids: Newton solves problems of fluids in movement and of motion through fluids. From the density of air he calculated the speed of sound waves.

Book III shows the law of gravitation at work in the universe: Newton demonstrates it from the revolutions of the six known planets, including the Earth, and their satellites. However, he could never quite perfect the difficult theory of the Moon's motion. Comets were shown to obey the same law; in later editions, Newton added conjectures on the possibility of their return. He calculated the relative masses of heavenly bodies from their gravitational forces, and the oblateness of Earth and Jupiter, already observed. He explained tidal ebb and flow and the precession of the equinoxes from the forces exerted by the Sun and Moon. All this was done by exact computation.

Newton's work in mechanics was accepted at once in Britain, and universally after half a century. Since then it has been ranked among humanity's greatest achievements in abstract thought. It was extended and perfected by others, notably Pierre Simon de Laplace, without changing its basis and it survived into the late 19th century before it began to show signs of failing. See Quantum Theory; Relativity.

V ALCHEMY AND CHEMISTRY
Newton left a mass of manuscripts on the subjects of alchemy and chemistry, then closely related topics. Most of these were extracts from books, bibliographies, dictionaries, and so on, but a few are original. He began intensive experimentation in 1669, continuing till he left Cambridge, seeking to unravel the meaning that he hoped was hidden in alchemical obscurity and mysticism. He sought understanding of the nature and structure of all matter, formed from the "solid, massy, hard, impenetrable, movable particles" that he believed God had created. Most importantly in the "Queries" appended to "Opticks" and in the essay "On the Nature of Acids" (1710), Newton published an incomplete theory of chemical force, concealing his exploration of the alchemists, which became known a century after his death.

VI HISTORICAL AND CHRONOLOGICAL STUDIES
Newton owned more books on humanistic learning than on mathematics and science; all his life he studied them deeply. His unpublished "classical scholia"\u2014explanatory notes intended for use in a future edition of the Principia\u2014reveal his knowledge of pre-Socratic philosophy; he read the Fathers of the Church even more deeply. Newton sought to reconcile Greek mythology and record with the Bible, considered the prime authority on the early history of mankind. In his work on chronology he undertook to make Jewish and pagan dates compatible, and to fix them absolutely from an astronomical argument about the earliest constellation figures devised by the Greeks. He put the fall of Troy at 904 BC, about 500 years later than other scholars; this was not well received.

VII RELIGIOUS CONVICTIONS AND PERSONALITY
Newton also wrote on Judaeo-Christian prophecy, whose decipherment was essential, he thought, to the understanding of God. His book on the subject, which was reprinted well into the Victorian Age, represented lifelong study. Its message was that Christianity went astray in the 4th century AD, when the first Council of Nicaea propounded erroneous doctrines of the nature of Christ. The full extent of Newton's unorthodoxy was recognized only in the present century: but although a critic of accepted Trinitarian dogmas and the Council of Nicaea, he possessed a deep religious sense, venerated the Bible and accepted its account of creation. In late editions of his scientific works he expressed a strong sense of God's providential role in nature.

VIII PUBLICATIONS
Newton published an edition of Geographia generalis by the German geographer Varenius in 1672. His own letters on optics appeared in print from 1672 to 1676. Then he published nothing until the Principia (published in Latin in 1687; revised in 1713 and 1726; and translated into English in 1729). This was followed by Opticks in 1704; a revised edition in Latin appeared in 1706. Posthumously published writings include The Chronology of Ancient Kingdoms Amended (1728), The System of the World (1728), the first draft of Book III of the Principia, and Observations upon the Prophecies of Daniel and the Apocalypse of St John

艾萨克·牛顿简介  艾萨克·牛顿[1],Isaac newton(1643年1月4日—1727年3月20日)是英国伟大的数学家、物理学家、天文学家和自然哲学家,同时他也是一个神学爱好者,晚年曾着力研究神学。1643年1月4日生于英格兰林肯郡格兰瑟姆附近的沃尔索普村,1727年3月20日在伦敦病逝。
  牛顿1661年入英国剑桥大学圣三一学院,1665年获文学士学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大多数重要科学创造的蓝图。1667年回剑桥后当选为圣三一学院院委,次年获硕士学位。1669年任卢卡斯教授直到1701年。1696年任皇家造币厂监督,并移居伦敦。1703年任英国皇家学会会长。1706年受女王安娜封爵。他晚年潜心于自然哲学与神学。
  牛顿在科学上最卓越的贡献是创建了微积分和经典力学。
  备注:牛顿是儒略历1642年12月25日 即格里历(阳历)1643年1月4日 所以正确的出生日期是1月4号Isaac Newton introduction to Isaac Newton [1], Isaac Newton (four-year-old jan. 4-1727 on March 20th) is the greatest mathematician and physicist, astronomers and natural philosophers, while he is also a theological studies have put in lover, theology. Four-year-old on January 4, was born in England lincolnshire near grantham of wal-mart thorpe village, on March 20, died in London.
Newton 1661, university of Cambridge, UK, into the holy trinity college in 1665, bachelor of arts degree. Two years later in my hometown avoid plague. These two years, he formulated the life most important scientific and create the blueprint. Cambridge in 1667 back after elected at trinity college courtyard, the committee with a master's degree. Responsible in 1669 by professor until 1701. Lucas, In 1696 as the royal mint supervision, and moved to London. Tsar British royal association. By the queen Anna conferment 1706. He spent his last years concentrates on natural philosophy and theology.
Newton in science is the most outstanding contributions to create the calculus and classical mechanics.
Note: Newton's Julian calendar in 1642, December 25th Gregorian (Gregorian calendar) four-year-old on January 4, so the correct birth date is January 4

  • 鐗涢】浠嬬粛(鑻辫鐨)
    绛旓細In Book I of Principia, Newton opened with definitions and the three laws of motion now known as Newton's laws (laws of inertia, action and reaction, and acceleration proportional to force). Book II presented Newton's new scientific philosophy which came to replace Cartesianism. Finally, Book...
  • 璋佹湁鐗涢】鐨勮嫳璇畝浠???
    绛旓細鎮ㄥソ锛屼互涓嬫槸涓绡囧叧浜庣墰椤跨殑鑻辫绠浠嬶紝闄勫甫姹夎瀵圭収锛屽笇鏈涙偍鍠滄锛British great physicist, mathematician, astronomer.The boon space Si say:"Newton established astronomy because of discovering gravitational theory, because of carry on light of resolve but established the optics of science, establis...
  • 浠嬬粛绉戝瀹剁殑鑻辫鏂囩珷
    绛旓細Doubts, and Newton's rejoinders, were printed in the learned journals. Notably, the scepticism of Christiaan Huygens and the failure of the French physicist Edm茅 Mariotte to duplicate Newton's refraction experiments in 1681 set scientists on the Continent against him for a generation. The publicat...
  • 鏈夊叧鐗涢】鐨勮嫳璇粙缁 瑕佽嫳姹夊弻璇戠殑 涓昏鍐呭瑕佹湁鍏崇殑浠栫殑鐮旂┒鎴愭灉 璋㈣阿...
    绛旓細Isaac Newton,a physical scientist ,mathematician and astronomer of Britain.鑹捐惃鍏嬄风墰椤锛岃嫳鍥界墿鐞嗗瀹跺吋鏁板瀹跺拰澶╂枃瀛﹀銆侶e was graduated from Oxford University and had been chairman of the Royal Society of Britain.姣曚笟浜庣墰娲ュぇ瀛︼紝鏄嫳鍥界殗瀹跺浼氫細闀裤侶e was one of the initiators of ...
  • 鎻忚堪鐗涢】鐨勮嫳璇浣滄枃(鎬ラ渶)
    绛旓細Four-year-old January 4, Newton was born in the town of Lincoln mighty eng, thorpe's a common family Newton's birth father has passed three months. Newton was a shortage of births, only on weight, in home 13.62 people are worried about whether he can survive. However, the...
  • 鍏充簬鐗涢】鑻辫浣滄枃
    绛旓細鍏充簬鐗涢】鑻辫浣滄枃锛Newton was born in a peasant family in England in 1643. His father died a few months before his birth, so he was dependent on his mother.As an adult, he studied at Trinity College of Cambridge University. He made many discoveries in his life, including the ...
  • 鐗涢】鐨勮嫳璇粙缁,蹇揩蹇!!!
    绛旓細鑹捐惃鍏嬄鐗涢】鐖靛+锛圫ir Isaac Newton锛屾牸閲屽巻1643骞1鏈4鏃モ1727骞3鏈31鏃ワ級锛岃嫳鍥芥暟瀛﹀銆绉戝瀹鍜屽摬瀛﹀锛屽悓鏃舵槸褰撴椂鐐奸噾鏈儹琛疯呫備粬鍦1687骞7鏈5鏃ュ彂琛ㄧ殑銆婅嚜鐒跺摬瀛︾殑鏁板鍘熺悊銆嬮噷鎻愬嚭鐨勪竾鏈夊紩鍔涘畾寰嬩互鍙婁粬鐨勭墰椤胯繍鍔ㄥ畾寰嬫槸缁忓吀鍔涘鐨勫熀鐭炽傜墰椤胯繕鍜岃幈甯冨凹鑼ㄥ悇鑷嫭绔嬪湴鍙戞槑浜嗗井绉垎銆備粬鎬诲叡鐣欎笅浜50...
  • 绉戝瀹剁畝浠嬭嫳鏂鐗
    绛旓細At the age of 32,he was named a fellow of the Royal Society;at the same year he received the Albret Einstien Award.Five years later,in 1979,he was appointed Top Professor of Mathematics at Cambridge,which was held by Sir Isaac Newton 300 years earlier.In 1988 Hawking wrote A...
  • 鏈夋病鏈鍏充簬鐗涢】鐨勮嫳鏂囦粙缁,涓嶇敤澶缁,鍙鏈変粬鐨勪竴浜涚敓骞冲拰鎴愬氨_鐧 ...
    绛旓細who had become interested in orbits, finally convinced Newton to expand and publish his calculations. Newton devoted the period from August 1684 to spring 1686 to this task, and the result became one of the most important and influential works on physics of all times, Philosophiae Na...
  • 鑻辫浣滄枃甯︾炕璇 鐗涢】鐨浜嬭抗
    绛旓細鍑犱箮浠栨墍鏈夋渶閲嶈鐨勬垚灏遍兘鍦ㄨ繖涓椂鏈熷瀹氫簡鍩虹銆鐗涢】鐮旂┒鑻规灉钀藉湴鐨勬晠浜嬶紝灏卞彂鐢熷湪杩欐湡闂淬傜槦鐤繃鍚庯紝鐗涢】鍥炲埌鍓戞ˉ澶у銆1668骞翠粬鍙栧緱纭曞+瀛︿綅銆1669骞达紝浠栫殑瀵煎笀宸寸綏鍗氬+杈炶亴锛屽苟绉瀬鎺ㄨ崘浠栨帴鏇夸簡鏁板鏁欐巿鐨勮亴浣嶃備粬浠庤繖骞村紑濮嬶紝灏辨垚涓哄叏鍓戞ˉ澶у鍏鐨勫ぇ鏁板瀹讹紝杩樿閫変负涓変竴瀛﹂櫌绠$悊濮斿憳浼氭垚鍛樸
  • 扩展阅读:中英文自动翻译器 ... 英转中翻译器 ... 英语介绍科学家霍金 ... 牛顿的英文介绍100字 ... 用英语来介绍科学家 ... 英文介绍科学家100字 ... 牛顿的英语介绍带翻译 ... 用英语介绍科学家短文 ... 牛顿英文介绍简短 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网