因式分解有几种方法 因式分解的方法有几种?

\u56e0\u5f0f\u5206\u89e3\u6709\u51e0\u79cd\u5e38\u89c1\u65b9\u6cd5

\u63d0\u516c\u56e0\u5f0f\u6cd5\u3001\u5206\u7ec4\u5206\u89e3\u6cd5\u3001\u5f85\u5b9a\u7cfb\u6570\u6cd5\u3001\u5341\u5b57\u5206\u89e3\u6cd5\u3001\u53cc\u5341\u5b57\u76f8\u4e58\u6cd5\u3001\u5bf9\u79f0\u591a\u9879\u5f0f\u7b49\u7b49\u3002
1\u3001\u4e00\u822c\u5730\uff0c\u5982\u679c\u591a\u9879\u5f0f\u7684\u5404\u9879\u6709\u516c\u56e0\u5f0f\uff0c\u53ef\u4ee5\u628a\u8fd9\u4e2a\u516c\u56e0\u5f0f\u63d0\u5230\u62ec\u53f7\u5916\u9762\uff0c\u5c06\u591a\u9879\u5f0f\u5199\u6210\u56e0\u5f0f\u4e58\u79ef\u7684\u5f62\u5f0f\uff0c\u8fd9\u79cd\u5206\u89e3\u56e0\u5f0f\u7684\u65b9\u6cd5\u53eb\u505a\u63d0\u516c\u56e0\u5f0f\u6cd5\u3002
2\u3001\u5206\u7ec4\u5206\u89e3\u6cd5\u6307\u901a\u8fc7\u5206\u7ec4\u5206\u89e3\u7684\u65b9\u5f0f\u6765\u5206\u89e3\u63d0\u516c\u56e0\u5f0f\u6cd5\u548c\u516c\u5f0f\u5206\u89e3\u6cd5\u65e0\u6cd5\u76f4\u63a5\u5206\u89e3\u7684\u56e0\u5f0f\uff0c\u5206\u89e3\u65b9\u5f0f\u4e00\u822c\u5206\u4e3a\u201c1+3\u201d\u5f0f\u548c\u201c2+2\u201d\u5f0f\u3002
3\u3001\u5f85\u5b9a\u7cfb\u6570\u6cd5\u662f\u521d\u4e2d\u6570\u5b66\u7684\u4e00\u4e2a\u91cd\u8981\u65b9\u6cd5\u3002\u7528\u5f85\u5b9a\u7cfb\u6570\u6cd5\u5206\u89e3\u56e0\u5f0f\uff0c\u5c31\u662f\u5148\u6309\u5df2\u77e5\u6761\u4ef6\u628a\u539f\u5f0f\u5047\u8bbe\u6210\u82e5\u5e72\u4e2a\u56e0\u5f0f\u7684\u8fde\u4e58\u79ef\uff0c\u8fd9\u4e9b\u56e0\u5f0f\u4e2d\u7684\u7cfb\u6570\u53ef\u5148\u7528\u5b57\u6bcd\u8868\u793a\uff0c\u5b83\u4eec\u7684\u503c\u662f\u5f85\u5b9a\u7684\uff0c\u7531\u4e8e\u8fd9\u4e9b\u56e0\u5f0f\u7684\u8fde\u4e58\u79ef\u4e0e\u539f\u5f0f\u6052\u7b49\uff0c\u7136\u540e\u6839\u636e\u6052\u7b49\u539f\u7406\uff0c\u5efa\u7acb\u5f85\u5b9a\u7cfb\u6570\u7684\u65b9\u7a0b\u7ec4\uff0c\u6700\u540e\u89e3\u65b9\u7a0b\u7ec4\u5373\u53ef\u6c42\u51fa\u5f85\u5b9a\u7cfb\u6570\u7684\u503c\u3002

4\u3001\u5341\u5b57\u5206\u89e3\u6cd5\u7684\u65b9\u6cd5\u7b80\u5355\u6765\u8bb2\u5c31\u662f\uff1a\u5341\u5b57\u5de6\u8fb9\u76f8\u4e58\u7b49\u4e8e\u4e8c\u6b21\u9879\u7cfb\u6570\uff0c\u53f3\u8fb9\u76f8\u4e58\u7b49\u4e8e\u5e38\u6570\u9879\uff0c\u4ea4\u53c9\u76f8\u4e58\u518d\u76f8\u52a0\u7b49\u4e8e\u4e00\u6b21\u9879\u7cfb\u6570\u3002\u5176\u5b9e\u5c31\u662f\u8fd0\u7528\u4e58\u6cd5\u516c\u5f0f(x+a)(x+b)=x²+(a+b)x+ab\u7684\u9006\u8fd0\u7b97\u6765\u8fdb\u884c\u56e0\u5f0f\u5206\u89e3\u3002
5\u3001\u53cc\u5341\u5b57\u76f8\u4e58\u6cd5\u662f\u4e00\u79cd\u56e0\u5f0f\u5206\u89e3\u65b9\u6cd5\u3002\u5bf9\u4e8e\u578b\u5982 Ax²+Bxy+Cy²+Dx+Ey+F \u7684\u591a\u9879\u5f0f\u7684\u56e0\u5f0f\u5206\u89e3\uff0c\u5e38\u91c7\u7528\u7684\u65b9\u6cd5\u662f\u5f85\u5b9a\u7cfb\u6570\u6cd5\u3002\u8fd9\u79cd\u65b9\u6cd5\u8fd0\u7b97\u8fc7\u7a0b\u8f83\u7e41\u3002\u5bf9\u4e8e\u8fd9\u95ee\u9898\uff0c\u82e5\u91c7\u7528\u201c\u53cc\u5341\u5b57\u76f8\u4e58\u6cd5\u201d\uff08\u4e3b\u5143\u6cd5\uff09\uff0c\u5c31\u80fd\u5f88\u5bb9\u6613\u5c06\u6b64\u7c7b\u578b\u7684\u591a\u9879\u5f0f\u5206\u89e3\u56e0\u5f0f\u3002
6\u3001\u4e00\u4e2a\u591a\u5143\u591a\u9879\u5f0f\uff0c\u5982\u679c\u628a\u5176\u4e2d\u4efb\u4f55\u4e24\u4e2a\u5143\u4e92\u6362\uff0c\u6240\u5f97\u7684\u7ed3\u679c\u90fd\u4e0e\u539f\u5f0f\u76f8\u540c\uff0c\u5219\u79f0\u6b64\u591a\u9879\u5f0f\u662f\u5173\u4e8e\u8fd9\u4e9b\u5143\u7684\u5bf9\u79f0\u591a\u9879\u5f0f\u3002x²+y²+z²\uff0cxy+yz+zx\u90fd\u662f\u5173\u4e8e\u5143x\u3001y\u3001z\u7684\u5bf9\u79f0\u591a\u9879\u5f0f\u3002

\u5206\u89e3\u56e0\u5f0f\u7684\u65b9\u6cd5\u6709\u4ec0\u4e48\uff1f

因式分解 因式分解(factorization) 因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等. ⑴提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的~. ②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法. am+bm+cm=m(a+b+c) ③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的. ⑵运用公式法 ①平方差公式:. a^2-b^2=(a+b)(a-b) ②完全平方公式: a^2±2ab+b^2=(a±b)^2 ※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍. ③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2). 立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2). ④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3 ⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)] a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数) ⑶分组分解法 分组分解法:把一个多项式分组后,再进行分解因式的方法. 分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式. ⑷拆项、补项法 拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形. ⑸十字相乘法 ①x^2+(p q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax b)(cx d) a \-----/b ac=k bd=n c /-----\d ad+bc=m ※ 多项式因式分解的一般步骤: ①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. (6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。 经典例题: 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立 因式分解的十二种方法 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a +4ab+4b (2003南通市中考题) 解:a +4ab+4b =(a+2b) 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x -19x-6 分析: 1 -3 7 2 2-21=-19 解:7x -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x -x -6x -x+2 解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ , x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例8、分解因式2x +7x -2x -13x+6 解:令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例9、因式分解x +2x -5x-6 解:令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例11、分解因式x +9x +23x+15 解:令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4) 参考资料: http://zhidao.baidu.com/question/36231611.html?ansup1

在初中数学内容中,“因式分解”是很关键的一章.本章内容对以后数学学习起到至关重要的作用.在教材中主要讲解了四种方法,其中提取公因式法、公式法和十字相乘法介绍的较细,这里不再研究.下面主要对分组分解法和其他常见的方法归纳如下.

  一、分组分解因式的几种常用方法.

  1.按公因式分解

  例1 分解因式7x2-3y+xy+21x.

  分析:第1、4项含公因式7x,第2、3项含公因式y,分组后又有公因式(x-3),

  解:原式=(7x2-21x)+(xy-3y)=7x(x-3)+y(x-3)=(x-3)(7x+y).

  2.按系数分解

  例2 分解因式x3+3x2+3x+9.

  分析:第1、2项和3、4项的系数之比1:3,把它们按系数分组.

  解;原式=(x3+3x2)+(3x+9)=x2(x+3)+3(x+3)=(x+3)(x2+3).

  3.按次数分组

  例3 分解因式 m2+2m·n-3m-3n+n2.

  分析:第1、2、5项是二次项,第3、4项是一次项,按次数分组后能用公式和提取公因式.

  解:原式=(m2+2m·n+n2)+(-3m-3n)=(m+n)2-3(m+n)=(m+n)(m+n-3).

  4.按乘法公式分组

  
  分析:第1、3、4项结合正好是完全平方公式,分组后又与第二项用平方差公式.

  
  5.展开后再分组

  例5 分解因式ab(c2+d2)+cd(a2+b2).

  分析:将括号展开后再重新分组.

  解:原式=abc2+abd2+cda2十cdb2=(abc2+cda2)+(cdb2+abd2)=ac(bc+ad)+bd(bc+ad)=(bc+ad)(ac+bd).

  6.拆项后再分组

  例6 分解因式x2-y2+4x+2y+3.

  分析:把常数拆开后再分组用乘法公式.

  解:原式=x2-y2+4x+2y+4-1=(x2+4x+4)+(-y2+2y-1)=(x+2)2-(y-1)2=(x+y+1)(x-y+3).

  7.添项后再分组

  例7 分解因式x4+4.

  分析:上式项数较少,较难分解,可添项后再分组.

  解:原式=x4+4x2-4x2+4=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2)

  二、用换元法进行因式分解

  用添加辅助元素的换元思想进行因式分解就是原式繁杂直接分解有困难,通过换元化为简单,从而分步完成.

  例8 分解因式(x2+3x-2)(x2+3x+4)-16.

  分析:将令y=x2+3x,则原式转化为(y-2)(y+4)-16再分解就简单了.

  解:令y=x2+3x,则

  原式=(y-2)(y+4)-16=y2+2y-24=(y+6)(y-4).

  因此,原式=(x2+3x+6)(x2+3x-4)=(x-1)(x+4)(x2+3x+6).

  三、用求根法进行因式分解

  例9 分解因式x2+7x+2.

  分析:x2+7x+2利用上述各方法皆不好完成,但仍可以分解,可用先求该多项式对应方程的根再分解.

  
  四、用待定系数法分解因式.

  例10 分解因式x2+6x-16.

  分析:假设能分解,则应分解为两个一次项式的积形式,即(x+b1)(x+b2),将其展开得

  x2+(b1+b2)x十b1·b2与x2+6x-16相比较得

  b1+b2=6,b1·b2=-16,可得b1,b2即可分解.

  解:设x2+6x-16=(x+b1)(x+b2)

  则x2+6x-16=x2+(b1+b2)x+b1·b2

   ∴x2+6x-16=(x-2)(x+8).。

主要有提取公因式 公式法 十字相乘

分解因式的方法有什么?



  • 鍥犲紡鍒嗚В鏈鍝鍑犵鏂规硶?
    绛旓細鍥犲紡鍒嗚В娉曠殑鍥涚鏂规硶锛氭彁鍏洜寮忔硶銆佸垎缁勫垎瑙f硶銆佸緟瀹氱郴鏁版硶銆佸崄瀛楀垎瑙f硶銆1銆佷竴鑸湴锛屽鏋滃椤瑰紡鐨勫悇椤规湁鍏洜寮忥紝鍙互鎶婅繖涓叕鍥犲紡鎻愬埌鎷彿澶栭潰锛屽皢澶氶」寮忓啓鎴愬洜寮忎箻绉殑褰㈠紡锛岃繖绉嶅垎瑙e洜寮忕殑鏂规硶鍙仛鎻愬叕鍥犲紡娉曘2銆佸垎缁勫垎瑙f硶鎸囬氳繃鍒嗙粍鍒嗚В鐨勬柟寮忔潵鍒嗚В鎻愬叕鍥犲紡娉曞拰鍏紡鍒嗚В娉曟棤娉曠洿鎺ュ垎瑙g殑鍥犲紡锛屽垎瑙f柟...
  • 鍥犲紡鍒嗚В12绉嶆柟娉鍥捐В
    绛旓細鍥犲紡鍒嗚В12绉嶆柟娉曞垎鍒槸锛氭彁鍏洜娉銆佸簲鐢ㄥ叕寮忔硶銆鍒嗙粍鍒嗚В娉曘佸崄瀛楃浉涔樻硶銆侀厤鏂规硶銆佹坊椤规硶銆鎹㈠厓娉銆佹眰鏍规硶銆佸浘璞℃硶銆佷富鍏冩硶銆佸埄鐢ㄧ壒娈婂兼硶銆寰呭畾绯绘暟娉 銆傛柟娉曡瑙o細1銆佹彁鍏洜娉曪紝濡傛灉涓涓椤瑰紡鐨勫悇椤归兘鍚湁鍏洜寮忥紝閭d箞灏卞彲浠ユ妸杩欎釜鍏洜寮忔彁鍑烘潵锛屼粠鑰屽皢澶氶」寮忓寲鎴愪袱涓洜寮忎箻绉殑褰㈠紡銆2銆佸簲鐢ㄥ叕寮...
  • 鍥犲紡鍒嗚В鐨鍑犵鏂规硶
    绛旓細1. 鍏洜寮忔硶锛氬綋澶氶」寮忎腑瀛樺湪鍏洜寮忔椂锛屽彲浠ラ氳繃灏嗗叕鍥犲紡鎻愬彇鍑烘潵锛屽啀灏嗗墿浣欑殑閮ㄥ垎杩涜鍥犲紡鍒嗚В銆2. 鍒嗙粍娉曪細灏嗗椤瑰紡涓殑椤规寜鐓ф煇绉嶈寰嬪垎缁勶紝浣垮緱姣忕粍涓殑椤瑰彲浠ラ氳繃鎻愬彇鍏洜寮忕殑鏂瑰紡杩涜鍥犲紡鍒嗚В銆3. 鍗佸瓧鐩镐箻娉锛氬浜庝簩娆″椤瑰紡锛屽彲浠ラ氳繃鍗佸瓧鐩镐箻鐨勬柟寮忚繘琛屽洜寮忓垎瑙o紝鍗冲皢澶氶」寮忎腑鐨勪簩娆¢」绯绘暟鍜屽父鏁...
  • 鍥犲紡鍒嗚В鐨勫父鐢鏂规硶鏈夊摢浜
    绛旓細鍥犲紡鍒嗚В鐨勫父鐢ㄦ柟娉曟湁锛氬叕鍥犲紡鎻愬彇娉曘佸畬鍏ㄥ钩鏂瑰紡銆佸垎缁勫垎瑙f硶銆佸钩鏂瑰樊鍏紡銆佷笁椤逛簰璐ㄥ垎瑙f硶銆1銆佸叕鍥犲紡鎻愬彇娉曪細灏嗗椤瑰紡涓殑鍏洜寮忔彁鍙栧嚭鏉ワ紝渚嬪瀵逛簬澶氶」寮2x + 4y锛屽彲浠ユ彁鍙栧嚭鍏洜寮2锛屽緱鍒2(x + 2y)銆2銆佸畬鍏ㄥ钩鏂瑰紡锛氬浜庝簩娆″椤瑰紡锛屼娇鐢ㄥ畬鍏ㄥ钩鏂瑰紡灏嗗叾鍥犲紡鍒嗚В銆備緥濡傚浜庝簩娆″椤瑰紡x^2 + 2xy ...
  • 鍥犲紡鍒嗚В鏈鍝鍑犵鏂规硶?
    绛旓細1銆佹彁鍏洜寮忔硶 鍑犱釜澶氶」寮忕殑鍚勯」閮藉惈鏈夌殑鍏叡鐨勫洜寮忓彨鍋氳繖涓椤瑰紡鍚勯」鐨勫叕鍥犲紡銆傚鏋滀竴涓椤瑰紡鐨勫悇椤规湁鍏洜寮忥紝鍙互鎶婅繖涓叕鍥犲紡鎻愬嚭鏉ワ紝浠庤屽皢澶氶」寮忓寲鎴愪袱涓洜寮忎箻绉殑褰㈠紡锛岃繖绉嶅垎瑙e洜寮忕殑鏂规硶鍙仛鎻愬叕鍥犲紡娉曘傚叿浣撴柟娉曪細褰撳悇椤圭郴鏁伴兘鏄暣鏁版椂锛屽叕鍥犲紡鐨勭郴鏁板簲鍙栧悇椤圭郴鏁扮殑鏈澶у叕绾︽暟锛涘瓧姣嶅彇鍚勯」鐨...
  • 鍥犲紡鍒嗚В鐨鏂规硶鍖呮嫭浠涔?
    绛旓細鈶鍒嗙粍鍒嗚В娉 鍒嗙粍鍒嗚В娉曪細鎶婁竴涓椤瑰紡鍒嗙粍鍚,鍐嶈繘琛屽垎瑙e洜寮忕殑鏂规硶.鍒嗙粍鍒嗚В娉曞繀椤绘湁鏄庣‘鐩殑,鍗冲垎缁勫悗,鍙互鐩存帴鎻愬叕鍥犲紡鎴栬繍鐢ㄥ叕寮.鈶锋媶椤广佽ˉ椤规硶 鎷嗛」銆佽ˉ椤规硶锛氭妸澶氶」寮忕殑鏌愪竴椤规媶寮鎴栧~琛ヤ笂浜掍负鐩稿弽鏁扮殑涓ら」锛堟垨鍑犻」锛,浣垮師寮忛傚悎浜鎻愬叕鍥犲紡娉銆佽繍鐢ㄥ叕寮忔硶鎴栧垎缁勫垎瑙f硶杩涜鍒嗚В锛涜娉ㄦ剰,...
  • 鍥犲紡鍒嗚В鐨鏂规硶鏈夊嚑绉?
    绛旓細澶氶」寮忕殑鍥犲紡鍒嗚В鏂规硶鍏辫12绉锛屾柟娉曞涓嬶細1銆 鎻愬叕鍥犳硶 濡傛灉涓涓椤瑰紡鐨勫悇椤归兘鍚湁鍏洜寮忥紝閭d箞灏卞彲浠ユ妸杩欎釜鍏洜寮忔彁鍑烘潵锛屼粠鑰屽皢澶氶」寮忓寲鎴愪袱涓洜寮忎箻绉殑褰㈠紡銆 渚1銆 鍒嗚В鍥犲紡x -2x -x(2003娣畨甯備腑鑰冮) x -2x -x=x(x -2x-1)2銆 搴旂敤鍏紡娉 鐢变簬鍒嗚В鍥犲紡涓庢暣寮忎箻娉曟湁鐫浜掗嗙殑鍏崇郴锛...
  • 鍥犲紡鍒嗚В鏈夊嚑绉嶆柟娉?
    绛旓細瀹氫箟锛氭妸涓涓椤瑰紡鍖栦负鍑犱釜鏈绠鏁村紡鐨勪箻绉殑褰㈠紡锛岃繖绉嶅彉褰㈠彨鍋氭妸杩欎釜澶氶」寮忓洜寮忓垎瑙o紙涔熷彨浣滃垎瑙e洜寮忥級銆傛柟娉曪細1锛庢彁鍏洜寮忔硶銆2锛庡叕寮忔硶銆3锛鍒嗙粍鍒嗚В娉銆4锛庡噾鏁版硶銆俒x^2+(a+b)x+ab=(x+a)(x+b)]5锛庣粍鍚堝垎瑙f硶銆6锛鍗佸瓧鐩镐箻娉銆7锛庡弻鍗佸瓧鐩镐箻娉曘8锛庨厤鏂规硶銆9锛庢媶椤硅ˉ椤规硶銆10锛...
  • 鍥犲紡鍒嗚В鏈夊嚑绉嶆柟娉
    绛旓細鍥犲紡鍒嗚В鏈夊嚑绉嶆柟娉曞涓嬶細甯歌鐨勬柟娉曟湁:鈶犳彁鍙鍏洜寮忔硶;鈶″叕寮忔硶;鈶㈡彁鍏洜寮忔硶涓庡叕寮忔硶鐨勭患鍚堣繍鐢ㄣ備竴.鎻愬叕鍥犲紡娉曘傚鏋滃椤瑰紡鐨勫悇椤规湁鍏洜寮忥紝灏嗗叕鍥犲紡鎻愬埌鎷彿澶栭潰銆傜‘瀹氬叕鍥犲紡鐨勬柟娉曪細锛1锛夌郴鏁扳斺斿彇澶氶」寮忓悇椤圭郴鏁扮殑鏈澶у叕绾︽暟銆傦紙2锛夊瓧姣嶏紙鎴栧椤瑰紡鍥犲紡锛夆斺斿彇鍚勯」閮藉惈鏈夌殑瀛楁瘝(鎴栧椤瑰紡鍥犲紡)...
  • 鍥犲紡鍒嗚В鐨鍥涚鏂规硶
    绛旓細鍥犲紡鍒嗚В鐨鍥涚鏂规硶濡備笅锛1.鍏洜鏁版硶锛氬綋澶氶」寮忕殑鎵鏈夐」閮藉惈鏈夊叡鍚岀殑鍥犲瓙鏃讹紝鍙互鎶婅繖涓洜瀛愭彁鍑烘潵锛岀劧鍚庣敤鍒嗛厤寰嬪皢鍓╀笅鐨勯儴鍒嗙浉鍔狅紝杩涗竴姝ュ寲绠銆2.鍗佸瓧鐩镐箻娉锛氬浜庝簩娆″椤瑰紡ax²+bx+c锛屽叾鍥犲紡鍙互琛ㄧず涓轰袱涓竴娆″椤瑰紡鐨勪箻绉備娇鐢ㄥ崄瀛楃浉涔樻硶鏃讹紝灏哸鍜宑鐨勪箻绉垎瑙d负涓や釜鍥犳暟鐨勪箻绉紝鐒跺悗鏍规嵁...
  • 扩展阅读:初中因式分解100题 ... 因式分解最强十字口诀 ... 12种因式分解公式 ... 初中因式分解必背公式 ... 因式分解的方法十字 ... 因式分解怎么做 ... 因式分解题100道 ... 因式分解的三个步骤 ... 因式分解的14种方法 ...

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网