球的体积积分推导

  • 球的体积公式推导过程是什么?
    答:分析如下:把一个半径为R的球体中心点在坐标原点o上表面分割成许多小块,每一小块的面积为ds,ds四个顶点A,B,C,D之间的距离AB=BC=CD=DA,四个角度相等,由o点指向A,B,C,D所张的立体角为dΩ,这样ds=dΩR。把四个顶点和o点连接,形成一个接近四棱锥体【体积为hL/3 ,h是四棱锥体的高...
  • 球体积公式的推导,详细。最好是用积分推的。
    答:先推导上半球的体积,再乘以2就行。假设上半球放在地平面上,(半径r)。 考虑高度为h处的体积,从h变化到h+dh过程中,体积可以看出是一个圆柱体的体积,这个圆柱体 高为dh,半径^2+h^2=r^2。由此可知此圆柱体的体积表达式。然后把表达式对h积分,从0积到r(因为h最高能达到r)。做完这个定...
  • 球体积公式怎么推导出来的?
    答:因此一个整球的体积为4/3 TR^3 球是圆旋转形成的。圆的面积是S=TR^ 2,则球是它的积分,根据积分公式可求相应的球的体积公式是V=4/3TR^A3
  • 圆球的体积公式是怎样推导出来的,要求用积分方法。
    答:则圆球的体积公式为∫(从-R到R)π·(R^2-z^2)dz =π·R^2(R-(-R))-π·(1/3)·(2R^3)=(4/3)π·R^3
  • 圆球的体积公式是怎样推导出来的,要求用积分方法。
    答:以球的一条直径为轴;球心置于坐标原点;所选直径与Z轴重合.则轴上在距球心z处与轴垂直的截面圆半径为r=√(R^2-z^2).其面积为π·r^2=π·(R^2-z^2).则以它为底,以dz为高的圆柱形微元体积为π·(R^2-z^2)dz.则圆球的体积公式为∫(从-R到...
  • 用二重积分推导球的体积公式
    答:=∫(0,π)da (-1/2)(2/3)(R²-t²)的3/2次方丨从0到R =∫(0,π)1/3R的三次方 =1/3πR的三次方 v=4×1/3πR的三次方=4/3πR的三次方 计算方法 体积公式是用于计算体积的公式,即计算各种几何体体积的数学算式。比如:圆柱、棱柱、锥体、台体、球、椭球等...
  • 帮忙用积分推导下球体的表面积、体积
    答:推导球的体积公式必须先知道圆柱的体积公式V=πr^2h 在直角坐标系上作一半径为r的圆,取第一象限的部分。这就得到了一个四分之一圆,这个四分之一圆旋转一周就是一个半球体。在这个四分之一圆上用两条与y轴垂直的直线切割,两条直线的距离为无限小,即dx,就得到一个无限小的矩形。这个矩形的...
  • 球的体积怎么积分?
    答:球面积S=∫dS=∫2πR²sinθ*dθ(从0积到π)=-2πR²cosθ|(下0上π)=4πR²应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它...
  • 如何用微积分知识推导球的体积公式?
    答:1、Disk Method——圆盘法:2、Shell Method——球壳法:3、General Method——一般法:
  • 怎样用积分推导球的表面积和体积?
    答:表面积就用重积分的应用算,即A=∫∫[1+(z'x)^2+(z'y)^2]^1\2dxdy,取上半球面方程为z=(a^2-x^2-y^2)^1\2,半径为a,则它在xoy面上的投影区域D={(x,y)│x^2+y^2≤a^2},算出来是2πa^2,因为是半个球,所以乘个2就完了,很基础滴。

  • 网友评论:

    单佳19449377640: 球体体积公式的推导过程 -
    54922有武 : 1.球的体积公式的推导 基本思想方法:先用过球心 的平面截球 ,球被截面分成大小相等的两个半球,截面⊙ 叫做所得半球的底面.(l)第一步:分割. 用一组平行于底面的平面把半球切割成 层. (2)第二步:求近似和. 每层都是近似于圆...

    单佳19449377640: 球的体积公式推导用二重积分. -
    54922有武 :[答案] 积分区域D为x^2+y^2=a^2,则球的体积可以表示为V=2∫∫√(a^2-x^2-y^2)dxdy,用极坐标计算,V=2∫dθ∫r√(a^2-r^2)dr,r积分限0到a,θ积分限0到2π, ∫r√(a^2-r^2)dr=(-1/2)∫√(a^2-r^2)d(a^2-r^2)=(-1/3)(a^2-r^2)^(3/2)=(1/3)a^3,所以V=(4π/3)a^3.

    单佳19449377640: 球的体积是怎样推导出来的 -
    54922有武 : 1解:将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎.剩下的部分与一个半球用平面去割时处处面积相等.等出它们体积相等的结论.而那个被挖体的体积好求.就是半球体积了.V=2/3πR^3 .因此一个整球的体积为4/3πR^3 球是圆旋转形成的.圆的面积是S=πR^2,则球是它的积分,可求相应的球的体积公式是V=4/3πR^32解:将球挖个小眼,灌满水,然后将水倒进量杯就算出体积拉!!!

    单佳19449377640: 球的体积公式是怎么样推导的? -
    54922有武 : 将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎.剩下的部分与一个半球用平面去割时处处面积相等.等出它们体积相等的结论.而那个被挖体的体积好求.就是半球体积了.V=2/3πR^3 .因此一个整球的体积为4/3πR^3 球是圆旋转形成的.圆的面积是S=πR^2,则球是它的积分,根据积分公式可求相应的球的体积公式是V=4/3πR^3

    单佳19449377640: 利用定积分推导球的体积公式如何利用定积分推导半径为r的球的体积公式?(如果需要建立坐标,请写明坐标的建立)请写出过程. -
    54922有武 :[答案] 在空间直角坐标系中. 球体的方程:x^2+y^2+z^2=r^2 沿着x轴正方向,球体被分成若干个圆,他们以x轴为圆心,半径 R为x的函数R(x)=√r^2-x^2 体积V=π∫(√r^2-x^2)^2dx(积分上限为r,下限为-r) =(4/3)r^3

    单佳19449377640: 如何由球的面积公式推出球的体积公式?利用积分怎么求?(给出过程) -
    54922有武 :[答案] 在球面上取一小块圆,连接圆心,这时候就构成了一个小的圆锥,用穷竭法考虑,分成了无限个,所有的底面小圆的和即为球的表面积,一个圆锥面积是1/3S底*高,高就是半径,那求和之后球的体积即为1/3*4πR^2*R

    单佳19449377640: 球形体积是怎样推导出来的 -
    54922有武 :[答案] 最早的计算方法是祖冲之与他的儿子祖恒提出的按“祖恒原理”,“幂势既同则积不容异”,(等高处横截面积都相等的两个几何体的体积必相等)的算法.高中数学课本上有. 若无高中课本,可参见: 高中课本的方法比微积分难! 微积分方法是最简...

    单佳19449377640: 球体积公式的推导,详细.最好是用积分推的. -
    54922有武 : 先推导上半球的体积,再乘以2就行. 假设上半球放在地平面上,(半径r). 考虑高度为h处的体积,从h变化到h+dh过程中,体积可以看出是一个圆柱体的体积,这个圆柱体 高为dh,半径^2+h^2=r^2.由此可知此圆柱体的体积表达式.然后把表达式对h积分,从0积到r(因为h最高能达到r).做完这个定积分,就是上半球的体积了.再乘以2就是整个球的体积. 谢谢

    单佳19449377640: 三棱锥体积,球表面积,球体积公式的推导 -
    54922有武 :[答案] 可用球的体积公式+微积分推导 定积分的应用:旋转面的面积.好多课本上都有,推导方法借助于曲线的弧长. 让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2.求球的表面积. 以x为积分变量,积分限是[-R,R]. 在[-R,R]上任取一个子区间[x,x+△x]...

    单佳19449377640: 怎么推导球的体积公?怎么推导球的体积公式
    54922有武 : 如果还没学过积分的话就用微元法:把球表面切割为大量的小块,这些小快足够小可以看作是平面,记这小块的面积为△S.考察以这块小平面为底,球心为顶点的锥体的体积△V=R△S/3,这是因为平面足够小所以锥体高度等于球半径.当这样的无穷多个平面叠加起来时,球体积就等于这些小锥体的体积之和,所以球体积V等于RS/3,S就是球的表面积等于4∏R方,即V=(4∏R^3)/3 如果用积分的方法就写出球面的解析式,用旋转体积分公式或者重积分的方法就能算得球体体积. 诚心为您回答,希望可以帮助到您,赠人玫瑰,手有余香,好人一生平安,有用的话,给个好评吧O(∩_∩)O~

    热搜:球赛积分问题教学视频 \\ 球的体积推导视频 \\ 球体的体积微元dv \\ 球体体积公式积分推导 \\ 积分推导球体积计算图 \\ 球的面积积分推导过程 \\ 球体体积积分推导图解 \\ 球坐标系三重积分公式 \\ 球赛积分问题20道及答案 \\ 球体上半部分方程 \\ 球体的体积积分推导过程 \\ 球体体积公式积分推导过程 \\ 球体积积分 \\ 球的体积推导 \\ 球面积分公式详细推导 \\ 球体积公式三重积分 \\ 球赛积分问题优质教学视频 \\ 球坐标系体积微元推导过程 \\ 球的体积公式推导过程三重积分 \\ 用二重积分推导球体积 \\

    本站交流只代表网友个人观点,与本站立场无关
    欢迎反馈与建议,请联系电邮
    2024© 车视网